1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1
BIBLIOGRAPHY 427


  1. Poincare, H. [1 890 ] Sur la probleme des trois corps et les equations de la
    dynamique, Acta Math. 13 , 1-271.

  2. Poincare, H. [1892-1899], Les Methodes Nouvelles de la Mecanique Celeste.
    3 volumes. English translation New Methods of Celestial Mechanics. History
    of Modern Physics and Astronomy 13 , Amer. Inst. Phys., 199 3.

  3. Poincare, H. [1892] Les formes d'equilibre d 'une masse fluide en rotation,
    Revue Generale des Sciences 3 , 809 -815.

  4. P oincare, H. [1901a] Sur la stabilite de l'equilibre des figures piriformes af-
    fectees par une masse fluide en rotation, Philosophical Transactions A 198 ,
    333-373.

  5. Poincare, H. [1901b] Sur une forme nouvelle des equations de la mechanique,
    CR Acad. Sci. 132 , 369-371.

  6. Poincare, H. [1910] Sur la precession des corps deformables. Bull Astron 27 ,
    321-356.

  7. Pullin, D.I., and P .G. Saffman [19 9 1] Long time symplectic integration: the
    example of four-vortex motion, Proc. Roy. Soc. Lon. A 432 , 481-494.

  8. Ratiu, T .S. [19 80 ] Thesis. University of California at Berkeley.

  9. Ratiu, T .S. [19 8 1] Euler-Poisson equations on Lie algebr as and the N-
    dimensional heavy rigid body. Proc. Natl. Acad. Sci. USA 78 , 1327-1328.

  10. Ratiu, T.S. [1982] Euler-Poisson equations on Lie algebras and the N -
    dimensional heavy rigid body,Am. J. Math. 104 , 409-448, 1337.

  11. R eich, S. [1993] Symplectic integration of constrained Hamiltonian systems
    by Runge-Kutta methods. Technical Report 93-13, University of British
    Columbia.

  12. Reich, S. [1994] Symplectic inegrators for systmes of rigid bodies. (preprint,
    Inst. Angw. Anal. Stch.)

  13. Reich, S. [1994] Momentum preserving symplectic integrators. Physica D,
    76( 4) :375-383.

  14. Reinhall, P .G., T.K. Caughey, and D .Q. Storti [1989] Order and chaos in
    a discrete Duffing oscillator, impli cations for numerical integration, Trans.
    ASME, 56 , 162-176.

  15. Rut h , R. [19 83 ] A canonical integration techniques, IEEE Trans. Nucl. Sci.
    30 , 2669-2671.

  16. Sanz-Serna, J. M. [1988] Runge-Kutta shemes for Hamiltonian systems, BIT
    28 , 877-883.

  17. Sanz-Serna, J. M. [19 9 1] Symplectic integrators for Hamiltonian problems:
    an overview. Acta Num., l , 243-286.

  18. Sanz-Serna, J. M. [1996] Backward error analysis of symplectic integrators.
    Fields Inst. Comm., 10 , 193 -205.

  19. Sanz-Serna, J. M. and M. Calvo [1994] Numerical Hamiltonian Problems.
    Chapman and Hall, London.

Free download pdf