Poincare, H. [1 890 ] Sur la probleme des trois corps et les equations de la
dynamique, Acta Math. 13 , 1-271.
Poincare, H. [1892-1899], Les Methodes Nouvelles de la Mecanique Celeste.
3 volumes. English translation New Methods of Celestial Mechanics. History
of Modern Physics and Astronomy 13 , Amer. Inst. Phys., 199 3.
Poincare, H. [1892] Les formes d'equilibre d 'une masse fluide en rotation,
Revue Generale des Sciences 3 , 809 -815.
P oincare, H. [1901a] Sur la stabilite de l'equilibre des figures piriformes af-
fectees par une masse fluide en rotation, Philosophical Transactions A 198 ,
333-373.
Poincare, H. [1901b] Sur une forme nouvelle des equations de la mechanique,
CR Acad. Sci. 132 , 369-371.
Poincare, H. [1910] Sur la precession des corps deformables. Bull Astron 27 ,
321-356.
Pullin, D.I., and P .G. Saffman [19 9 1] Long time symplectic integration: the
example of four-vortex motion, Proc. Roy. Soc. Lon. A 432 , 481-494.
Ratiu, T .S. [19 80 ] Thesis. University of California at Berkeley.
Ratiu, T .S. [19 8 1] Euler-Poisson equations on Lie algebr as and the N-
dimensional heavy rigid body. Proc. Natl. Acad. Sci. USA 78 , 1327-1328.
Ratiu, T.S. [1982] Euler-Poisson equations on Lie algebras and the N -
dimensional heavy rigid body,Am. J. Math. 104 , 409-448, 1337.
R eich, S. [1993] Symplectic integration of constrained Hamiltonian systems
by Runge-Kutta methods. Technical Report 93-13, University of British
Columbia.
Reich, S. [1994] Symplectic inegrators for systmes of rigid bodies. (preprint,
Inst. Angw. Anal. Stch.)
Reinhall, P .G., T.K. Caughey, and D .Q. Storti [1989] Order and chaos in
a discrete Duffing oscillator, impli cations for numerical integration, Trans.
ASME, 56 , 162-176.
Rut h , R. [19 83 ] A canonical integration techniques, IEEE Trans. Nucl. Sci.
30 , 2669-2671.
Sanz-Serna, J. M. [1988] Runge-Kutta shemes for Hamiltonian systems, BIT
28 , 877-883.
Sanz-Serna, J. M. [19 9 1] Symplectic integrators for Hamiltonian problems:
an overview. Acta Num., l , 243-286.
Sanz-Serna, J. M. [1996] Backward error analysis of symplectic integrators.
Fields Inst. Comm., 10 , 193 -205.
Sanz-Serna, J. M. and M. Calvo [1994] Numerical Hamiltonian Problems.
Chapman and Hall, London.