426 J. E. MARSDEN, MECHANICS, DYNAMICS, AND SYMMETRY
- O 'Reilly, 0, N .K. Malhotra and N.S. Namamchchivaya [1996] Some aspects
of destabilization in reversible dynamical systems with application to follower
forces, Nonlinear Dynamics, 10 , 63-87. - Ortega, J.P. and T.S. Ratiu [1997a] Symmetry, Reduction, and Stability in
Hamiltonian Systems preprint. - Ortega, J.P. and T.S. Ratiu [1997b] Stability of relative equilibria. Symplectic
block diagonalization. preprint. - Ortega, J.P. and T.S. Ratiu [1997c] Persistance et differentiabilite de
l'ensemble des elements critiques relatifs dans les systemes hamiltoniens
symetriques C.R. Acad. Sci., 325 , 1107-1111. - Ortiz, M. (1986). A note on energy conservation and stability of nonlinear
time-stepping algorithms. Computers and Structures, 24 , 167-168. - Ostrowski, J. [1996] Geometric Perspectives on the Mechanics and Control of
Undulatory Locomotion, PhD dissertation, California Institute of Technology. - Ostrowski and Burdick [1996] Gait kinematics for a serpentine robot, IEEE
Int. Conj. on Robotics and Automation, 1294-9, Minneapolis, April, 1996. - Ostrowski, J., J. W. Burdick, A. D. Lewis & R. M. Murray [1995] The me-
chanics of undulatory locomotion: The mixed kinematic and dynamic case.
IEEE Int. Conj. on Robotics and Automation, 1945-1951, Nagoya, Japan,
May, 1995. - Ostrowski, J., J.P. Desai, and V. Kumar. Optimal gait selection for nonholo-
nomic locomotion systems. Submitted to the IEEE Conj. on Robotics and
Automation, September 1996. - Ovsienko, V .Y. and B .A. Khesin [1987] Korteweg-de Vries superequations as
an Euler equation. Funct. Anal. and Appl. 21 , 329-331. - P a trick, G. [1989] The dynamics of two coupled rigid bodies in three space,
Cont. Math. AMS 97 , 315- 336. - Patrick, G. [1992] Relative equilibria in Hamiltonian systems: The dynamic
interpretation of nonlinear sta bility on a reduced phase space, J. Geom. and
Phys. 9 , 111 - 119. - Patrick, G. [1995] Relative equilibria of Hamiltonian systems with symmetry:
linearization, smoothness and drift, J. Nonlinear Sci. 5, 373-418. - Pedlosky, J. [1987] Geophysical Fluid Dynamics, 2nd Edition, Springer, New
York. - Pedroni, M. [1995] Equivalence of the Drinfeld-Sokolov reduction to a bi-
Hamiltonian reduction. Lett. Math. Phys. 35 , 291-302. - Pekarsky, S. and J.E. Marsden [1998] Point Vortices on a Sphere: Stability of
Relative Equilibria. J. Math. Phys., (to a ppear). - Poincare, H. [1885] Sur l'equilibre d 'une masse fl.uide animee d'un mouvement
de rotation, Acta. Math. 7 , 259. - Poincare, H. [1890] Theorie des tourbillons, Reprinted by Editions Jacques
Ga bay, Paris.
I