8 .2 • TRIGONOMETRIC INTEGRALS 30 5
We solve for cos 28 and sin 28 to obtain the substitutions
1
and sin 28 =
2
i (z^2 - z-^2 ).
Using the identity for cos 28 along with Substitutions (8-4) and (8-5), we rewrite
the integral as
J
! (z2 + z -2) dz= J i(z4+1) dz= J f (z)dz,
5-4 (z+z-^1 ) iz 2z2(z- 2) (2z- 1)
ct (O)^2 ct (OJ ct (OJ
where f (z) = 2 z ~~:~~•-!). The singularities of J lying inside Ci(O) are poles
located at the points 0 and ~-We use Theorem 8.2 to get the residues:
R [f OJ 1. d^2 J ( ) 1. d. ( z
4
+ 1)
es ' = z-o im d-z z z = z-o lill -d z i2 (2 z (^2) - (^5) z + 2)
. .4z^3 (2z^2 - 5z+2) - (4z- 5) (z^4 +1) 5i
= hmi = -
.-o 2 (2z2 - 5z + 2)^2 8
and
[
l]. ( 1). i(z
4
+1) 17i
Res f, -
2
= hm z - -
2
f (z) = h m
4 2
( 2 ) = --
2
·
z-~ z-i Z z- 4
Therefore, we conclude that
[
2
" cos28d8 = 2 7ri (5i _ 17i) = ~-
}0 5-4cos8 8 24 6
-------~EXERCISES FOR SECTION 8.2
Use residues to find
1 r2" 1 dfJ
· Jo 3 cos 8 + 5 ·
- r2" 1 dfJ.
Jo 4sin8+ 5
3 Ii2" 1 dfJ
-^0 15sin^2 8 + 1 ·
r2" 1
- Jo 5cos2B+4d8.