1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
306 CHAPTER 8 • RESIDUE THEORY

. 2 (}
5. fi2" Sill dO.


(^0) 5 + 4cos8


. 2 (}
6. r2" Sill d(J.
Jo 5 - 3cos8


r2w 1


  1. Jo 2 dO.
    (5+ 3cos1J)


8 Ji2"

1
dlJ

-^0 (5+ 4cos0)^2 ·
9. fi2" cos 28 dB.


(^0 5) + 3cos8
lO. r2" cos W dO.
J o 13 - 12cos8
r2.,,. 1
11. Jo 2d0·
(1 + 3 cos^2 B)
12. Ji2"
1
0 2 dO.
(1+8cos^2 0)
13 f2" cos
(^2) 31J dO
·Jo 5 - 4cos28 ·
14. J.2" cos
2
38 dO.
(^0) 5-3cos28
15 J.
2
"
1
di}


-^0 acosO+ bsinO+ d '


where a, b, and d are re al and a^2 + b^2 < d^2 •

J.

2w 1


  1. 0 2 (}. 2 d8, where a, b, and dare real and a> d and b > d.
    acos +bsm O+d


8.3 Improper Integrals of Rational Funct ions

An important application of the theory of residues is the evaluation of certain
types of improper integrals. We let f be a continuous function of the real variable
x on the interval 0 :::; x < oo. Recall from calculus that the improper integral f
over [O,oo) is defined by

(°" f (x) dx = Jim r f (x) dx,
Jo b-oo} 0
Free download pdf