12.5 • THE LAPLACE TRANSFORM 547Solution Using linearity and lines 6 and 7 of Table 12.2, we obtain
c-1 (3s + 6)
s^2 + 9f(t)
1tn= 3c-1 (-s ) + zc-1 (-3 )
s^2 + 9 52 + 9= 3cos3t + 2sin3t.
F(s) = J; f(t) e-•^1 dt
1
s
n!
8 n+1
Uc (t) unit stepe -cs
s
eat^1
s - a
t"eat
n!
(s -at+1cosbts
s2 +bzsinbtb
s2 +bze"^1 cos bts - a
(s - a.}2 + b^2e"^1 sin btb
(s - a)^2 + b^2tcosbt52 - b2
(s2 + b2)2tsinbt
2bs
(s2 + b2)2coshat
s
52 - a2
sinhata
s2 -a2
Table 12.2 Table of Laplace Transforms