1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
12.5 • THE LAPLACE TRANSFORM 547

Solution Using linearity and lines 6 and 7 of Table 12.2, we obtain


c-1 (3s + 6)

s^2 + 9

f(t)


1

tn

= 3c-1 (-s ) + zc-1 (-3 )


s^2 + 9 52 + 9

= 3cos3t + 2sin3t.

F(s) = J; f(t) e-•^1 dt


1
s
n!
8 n+1
Uc (t) unit step

e -cs
s
eat^1
s - a
t"eat
n!
(s -at+1

cosbt

s
s2 +bz

sinbt

b
s2 +bz

e"^1 cos bt

s - a
(s - a.}2 + b^2

e"^1 sin bt

b
(s - a)^2 + b^2

tcosbt

52 - b2
(s2 + b2)2

tsinbt


2bs
(s2 + b2)2

coshat
s
52 - a2
sinhat

a
s2 -a2
Table 12.2 Table of Laplace Transforms
Free download pdf