1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1

558 CHAPTER 12 • FOURI ER SERIES AND THE LAPLACE TRANSFORM


y
y = j(t)
0 0


  • I 2 3 4 5

    • I




Figure 12.25


  1. Let f (t) be as gjven in Figure 12.26. Hint: The function is the integral of the one
    in Exercise 13.


y
y =ft.ti


  • I 2 3 4 5


Figure 12. 26


  1. Find c-• (1 -e -· -2•)
    82

    • e.




For Exercises 17- 23, solve the initial value problem.

17. y" (t) + 2 y' (t) + 2y (t) = 0, with y (0) = - 1 and y' (0) = 1.

18. y" (t) + 4y' (t) + 5y (t) = 0, with y (0) = 1 and y' (0) = -2.

19. 2y" (t) + 2y' (t) + y (t) = 0, with y (0) = 0 and y' (0) = 1.


  1. y"(t)-2y'(t) +y(t) = 2e•, with y(O) = O and y' (0) = O.

  2. y" (t) + 2y' (t) + y (t) = 6te-•, with y (0) = 0 and y' (0) = O.


22. y" (t) + 2y' (t) + y (t) = 2U 1 (t) e•-•, with y (0) = 0 and y' (0) = 0.


  1. y" (t) + y (t) = Uw/2 (t), with y (0) = 0 and y' (0) = 1.

Free download pdf