1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

236 Isobaric ensembles


∂H


∂hαγ

=−



i


μ,ν,λ

πi,μπi,ν
2 mi


ρ,σ

(


h−μρ^1

∂hρσ
∂hαγ

h−σλ^1 h−νλ^1 +h−μλ^1 h−νρ^1

∂hρσ
∂hαγ

)


h−σλ^1

+



∂hαγ

U(hs 1 ,...,hsN). (5.7.22)

Using∂hρσ/∂hαγ=δαρδσγand performing the sums overρandσ, we find


∂H
∂hαγ

=−



i


μ,ν,λ

πi,μπi,ν
2 mi


ρ,σ

(


h−μα^1 h−γλ^1 h−νλ^1 +h−μλ^1 h−να^1 h−γλ^1

)


+



∂hαγ

U(hs 1 ,...,hsN). (5.7.23)

Since



∂hαγ
U(hs 1 ,...,hsN) =


i


μ,ν

∂U


∂(hsi)μ

∂hμν
∂hαγ
si,ν

=



i


μ,ν

∂U


∂(hsi)μ

δαμδγνsi,ν

=



i

∂U


∂(hsi)α

si,γ, (5.7.24)

we arrive at the result


∂H
∂hαγ

=−



i


μ,ν,λ

πi,μπi,ν
2 mi


ρ,σ

(


h−μα^1 h−γλ^1 h−νλ^1 +h−μλ^1 h−να^1 h−γλ^1

)


+



i

∂U


∂(hsi)α

si,γ. (5.7.25)

To obtain the pressure tensor estimator, we must multiply byhβγand sum overγ.
When this is done and the sum overγis performed according to



γhβγh

− 1
γλ=δβλ,
then the sum overλcan be performed as well, yielding



γ

hβγ

∂H


∂hαγ

=−



i


μ,ν

πi,μπi,ν
2 mi


ρ,σ

(


h−μα^1 h−νβ^1 +h−μβ^1 h−να^1

)


+



i


γ

∂U


∂(hsi)α

hβγsi,γ. (5.7.26)

We now recognize that



απi,μh

− 1
μα=pi,α,


νπi,νh

− 1
νβ=pi,β,∂U/∂(hsi) =∂U/∂ri
and



γhβγsi,γ=ri,β. Substituting these results into eqn. (5.7.26) and multiplying
by− 1 /det(h) gives

Free download pdf