Pressure tensor estimator 235H=
∑
i∑
α,β1
mi
πi,αh−αβ^1 pi,β−L=∑
i∑
α,β,γ1
mi
πi,αh−αβ^1 πi,γh−γβ^1 −L. (5.7.14)Since the kinetic energy term inLis just 1/2 of the first term in eqn. (5.7.14), the
Hamiltonian becomes
H=
∑
i∑
α,β,γπi,απi,γh−αβ^1 h−γβ^1
2 mi+U(hs 1 ,...,hsN). (5.7.15)The pressure tensor in the canonical ensemble is given by
Pαβ(int)=1
Q(N,h,T)kT
det(h)∑
γhβγ
∂Q(N,h,T)
∂hαγ=
kT
det(h)1
Q(N,h,T)∫
dNπdNs∑
γhβγ(
−β∂H
∂hαγ)
e−βH=−
〈
1
det(h)∑
γhβγ∂H
∂hαγ〉
. (5.7.16)
Eqn. (5.7.16) requires the derivative of the Hamiltonian with respectto an arbitrary
element ofh. This derivative must be obtained from eqn. (5.7.15), which requires
more index bookkeeping. Let us first rewrite the Hamiltonian using a different set of
summation indices:
H=
∑
i∑
μ,ν,λπi,μπi,νh−μλ^1 h−νλ^1
2 mi+U(hs 1 ,...,hsN). (5.7.17)Computing the derivative with respect tohαγ, we obtain
∂H
∂hαγ=
∑
i∑
μ,ν,λπi,μπi,ν
2 mi(
∂h−μλ^1
∂hαγh−νλ^1 +h−μλ^1∂h−νλ^1
∂hαγ)
+
∂
∂hαγU(hs 1 ,...,hsN). (5.7.18)In order to proceed, we will derive an identity for the derivative of the inverse of a
matrix M(λ) with respect to an arbitrary parameterλ. We start by differentiating the
matrix identity
M(λ)M−^1 (λ) = I (5.7.19)
with respect toλto obtain
dM
dλM−^1 + M
dM−^1
dλ= 0. (5.7.20)
Solving eqn. (5.7.20) for dM−^1 /dλyields
dM−^1
dλ=−M−^1
dM
dλM−^1. (5.7.21)
Applying eqn. (5.7.21) to eqn. (5.7.18), we obtain