1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
References 687

for reaction-rates in dissipative systems.Phys. Rev. Lett., 65 , 1399.
Poulsen, J. A., Nyman, G., and Rossky, P. J. (2005). Static and dynamic quantum
effects in molecular liquids: A linearized path integral description of water. Proc.
Natl. Acad. Sci. U.S.A., 102 , 6709.
Procacci, P., Marchi, M., and Martyna, G. J. (1998). Electrostaticcalculations and
multiple time scales in molecular dynamics simulation of flexible molecular systems.
J. Chem. Phys., 108 , 8799.
Rahman, A. (1964). Correlations in motion of atoms in liquid argon.Phys. Rev., 136 ,
A405.
Rahman, A. and Stillinger, F. H. (1971). Molecular dynamics study ofliquid water.
J. Chem. Phys., 55 , 3336.
Ramshaw, J. D. (2002). Remarks on non-Hamiltonian statistical mechanics. Euro-
phys. Lett., 59 , 319.
Rathore, N., Chopra, M., and de Pablo, J. J. (2005). Optimal allocation of replicas
in parallel tempering simulations.J. Chem. Phys., 122 , 024111.
Rathore, N., Knotts IV, T. A., and de Pablo, J. J. (2003). Density-of-states simula-
tions of proteins.J. Chem. Phys., 118 , 4285.
Reichman, D. R. and Silbey, R. J. (1996). On the relaxation of a two-level system:
Beyond the weak-coupling approximation.J. Chem. Phys., 104 , 1506.
Ricci, M. A., Nardone, M., Ricci, F. P., Andreani, C., and Soper, A. K. (1995).
Microscopic structure of low temperature liquid ammonia: A neutrondiffraction
study.J. Chem. Phys., 102 , 7650.
Rosso, L., Abrams, J. B., and Tuckerman, M. E. (2005). Mapping the backbone
dihedral free-energy surfaces in small peptides in solution using adiabatic free-energy
dynamics.J. Phys. Chem. B, 109 , 4162.
Rosso, L., Minary, P., Zhu, Z. W., and Tuckerman, M. E. (2002). On the use of the
adiabatic molecular dynamics technique in the calculation of free energy profiles.J.
Chem. Phys., 116 , 4389.
Ryckaert, J. P. and Ciccotti, G. (1983). Introduction of andersen demon in the
molecular-dynamics of systems with constraints.J. Chem. Phys., 78 , 7368.
Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. (1977). Numerical-integration
of cartesian equations of motion of a system with constraints—Molecular-dynamics
of n-alkanes.J. Comput. Phys., 23 , 327.
Sardanashvily, G. (2002a). The Lyapunov stability of first-order dynamic equations
with respect to time-dependent Riemannian metrics.arXiv.nlin.CD/0201060v1.
Sardanashvily, G. (2002b). The Lyapunov stability of first-order dynamic
equations with respect to time-dependent Riemannian metrics: An example.
arXiv.nlin.CD/0203031v1.
Schlick, T., Mandzuik, M., Skeel, R. D., and Srinivas, K. (1998). Nonlinear resonance
artifacts in molecular dynamics simulations.J. Comput. Phys., 140 , 1.
Schoell-Paschinger, E. and Dellago, C. (2006). A proof of Jarzynski’s nonequilibrium
work theorem for dynamical systems that conserve the canonical distribution. J.
Chem. Phys., 125 , 054105.
Schulman, L. S. (1981). Techniques and Applications of Path Integration. Wiley-
Interscience, New York, NY.

Free download pdf