1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
2.3 Inequalities and Limits 79

LIMITS PRESERVE INEQUALITIES

In our future work we shall have many occasions to use the following two
theorems.

Theorem 2.3.12 (Limits Preserve Inequalities, I)


(a) If {an} converges and Vn EN, an::::; K, then lim an::::; K.
n-+oo

(b) If {an} converges and Vn EN, an 2". K, then n-+oo lim an 2". K.

Proof. (a) Suppose {an} converges and Vn EN, an::::; K. Say an---+ L. We
must prove that L ::::; K. For contradiction, suppose L > K. Let c: = L - K.
Then c: > 0. Since an---+ L, ::J no EN 3
n 2". no :=? Ian - LI < c:

Therefore, L ::::; K.

(b) Exercise 12. •

:=? -c: <an -L < c:
:=?L-c:<an<L+c:
==> L - (L - K) < an
:=? K <an; contradiction!

Theorem 2.3.13 (Limits Preserve Inequalities, II) If {an} and {bn} are
convergent sequences, and Vn EN, an ::::; bn, then n--+oo lim an ::::; n--+oo lim bn.

Proof. Suppose {an} and {bn} are convergent sequences, and Vn E N,
an ::::; bn. Define the sequence {en} by Cn = bn - an. Then, by the algebra of
limits, {en} converges and
lim Cn = lim (bn - an) = lim bn - lim an.
On the o~~; hand,nv;.ooE N, :!;, 2". 0~;


00
by Th~-::r':m 2.3.12, lim Cn 2". 0.
n-+oo
That is, lim bn - lim an 2". O; i.e., lim an ::::; lim bn. •
n--+oo n-+oo n--+oo n--+oo


Theorem 2.3.14 (Partial Converse of 2.3.13) If {an} and {bn} are con-
vergent sequences such that lim an < lim bn, then ::J no E N 3 n 2". no ==> an <
n--+oo n-+oo
bn.

Proof. Exercise 16. •
Free download pdf