4.4 *Infinity in Limits 221
Theorem 4.4.24 (Limits of Polynomials at ±oo) Let p(x) = anxn +
an_ 1 xn-l + · · · + a 1 x + ao denote a polynomial. Then
1. Im p ( ) X = { +oo if an > O;
x-++oo -oo if an < 0.
If n IS. even , 1 Im. p ( ) x = { +oo if an > O;
X-+- 00 - CX) if an < 0.
If n IS. 0 dd ' 1 Im. p ( ) x = { -oo if an > O;
X-+-00 +oo if an < 0.
Proof. Exercise 18. •
y y
x x
n even nodd
f(x) = x4 -2x3 f(x) = i3 -3x + 3
Figure 4.9
RATIONAL FUNCTIONS AND HORIZONTAL ASYMPTOTES
Definition 4.4.25 The graph of a function f has a horizontal line y = m as a
horizontal asymptote if lim f(x) = m or lim f(x) = m.
x-++oo x-+- oo
y
y=m
------------------------------------------------------
x
Figure 4.10