(^474) Chapter 8 • Infinite Series of Real Numbers
8.
v'2 v'4 v'6 JS JI5
3. 5 + 5. 7 + 7. 9 + 9. 11 + 11. 13 + ...
1 1·2 1 ·2· 3 1 ·2·3·4
- 3 + 3.5 +~ + 3 .5.7.9 +···
1 2 3 4 5
-~~+ + + + +···
~ ~ ff.D #5-6 vim
10.
1 4 27 64 3, 125
-+-+-+-+--+···
e e^2 e^3 e^4 e^5
11.
12.
1 1 1 1
ln2 + (ln3)^2 + (ln4)3 + (ln5)4 + · · ·
In Exercises 13 - 30, use tests given in Sections 8.1 and 8.2 to determine whether
the series converges or diverges.
13. ~~
L..., n^2 - 5
n=l
~lnn
- L...,- 2
n=2 n - f ln~
n=2 n
19. f^1 + cosn
n=l sin
2
n
00
- '"'!!'.._
L..., en
n=l
oo I - '"'!!:.: L..., en
n=l - ~sinn(~)
oo ( )2n
- ~ n3~ 1
00 1
14. '"' L..., -----,,3n 2 --- lOn
n=l
16. f lnn
n=2 5n
- f fa
n= 2 lnn
20 ~^7 fa
· ~ n^2 + 6ifri
00 3 - '"'!2:_
L..., 3n
n=l - f ln(~3)
n
n=2 - oo (3n + 5)n/ 2
2= 2n+1
n=l - ~cosn (n
2
:
1
)
1 1 1 1 1 1 1 1
~.l+~+~+~+w+~+w+~+~+···
1 1 1 1 1 1 1 1 1
- 22 + 1 + 42 + 32 + 62 + 52 + 32 + 72 + 102 + 92 + ...
00 1
- Prove that ~ n(ln n)P converges if and only if p > 1.