8.2 Nonnegative Series 473
To find lim k (1 -ak+l) = lim k [1 -(k kP ) ] , we use L'Hopital's
k-+oo ak k-+oo + 1 p
rule:
1 imx. [ 1 - xP ] =1mx 1. [(x+l)P-xP]
X-+00 (x + l)P X-+00 (x + l)P
= lim x x · --~
[
(1 + .!f -1 1 l
X-+00 1 ( 1 + ~) p
( 1 + l) p .- 1 1 ( 1 + l) p - 1
= lim x · lim = lim ~~x=o-c----
x-+oo ~ x-+oo ( 1 + ~) p x-+oo ~
-- 11·m P (1 + ~)p-1 (-x-2)
x-+oo -x-2
(using L'Hopital's rule)
(
1 )p-1
= lim p 1 + - = p.
X-+00 X
Thus, Raabe's test tells us that the p-series converges if p > 1 and diverges
if p < 1. It is inconclusive if p = 1. 0
EXERCISE SET 8.2
- Prove Theorem 8.2.2.
- Prove Theorem 8.2.6. Also, express this theorem using the language of
one series "dominating" another.
In Exercises 3-12, write the given series in the form I: an and use tests
given in Sections 8.1 and 8.2 to determine whether the series converges
or diverges.
1 1 1 1 - 1 + 22 + 33 + 44 + 55 +...
4.
5.
6.
7.
1 2 3 4
G3 + 5. 7 + 9. 11 + 13. 15 + ...
1 J2 J3 v'4 V5 J6
3+5+7+9+11+13+···
1 J2 J3 v'4 V5
1.3+2.4 +3·5+ 4.5+5.7+···
1 1 1 1 1
--+--+--+--+--+···
~ J2-3 ~ v;r5 ~