62 Chapter 2 • Sequences
--(a)
- (c)
__.....(e)
--(g)
./ (i)
lim --; = 0
n--tex> n
7n
lim --=0
n-+= n^2 + 3
lim ~ =3
n-+= n + 4
lim 3n+4 = ~
n-+= 7n - 1 7
lim Sn = 0
n-+= 11 + n^2
n^2 - 2
lim ---= 1
n-+= n^2 + n
n - 2n^2 2
/ (m) lim =--
n-+= 3n^2 + 1 3
n^2 +3n
./ ( o) lim 2 = -1
n-+= 10 - n
. 3
(b) hm --= 0
n-+= n + 4
11
(d) lim -- 2 = 0
n-+= 1 -n
( f) lim^2 n -^5 = 2
n-+= n - 6
2n 2
(h) lim --= --
n-+= 1 - 5n 5
(j) lim n = 0
n-+= 1 + 8n^2
r 8n
2
+ 3
(1) n~~ 5n^2 - 2n
8
- 5
2n^2 -n
(n) lim = 2
n-+<Xl n^2 - 5n - 7
(p) lim n 2 + 6n = 0
n-+<Xl n3 - 5n + 1
- Use the methods of this section to prove each of the limit statements
(a)- (p) given in Exercise 2 above.
2.2 Algebra of Limits
In this section we establish some basic rules that allow us to evaluate limits
algebraically, without resorting to c-n 0 arguments.
Theorem 2.2.1 (Absolute Value and Limits) Suppose {xn} is a sequence.
Then
(a) Xn-+ 0 {:} lxnl-+ O;
(b) Xn-+ L {:} lxn - LI-+ O;
(c) Xn-+ L =? lxnl-+ ILi. (Note: we do not claim "{:}. ")
Proof. Exercise 1. •
Definition 2.2.2 A sequence { Xn} is called a constant sequence if 3 c E JR 3
'<In E N,xn = c.