1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
62 Chapter 2 • Sequences

--(a)


  • (c)


__.....(e)

--(g)

./ (i)


lim --; = 0
n--tex> n

7n
lim --=0
n-+= n^2 + 3

lim ~ =3
n-+= n + 4

lim 3n+4 = ~
n-+= 7n - 1 7

lim Sn = 0
n-+= 11 + n^2

n^2 - 2
lim ---= 1
n-+= n^2 + n

n - 2n^2 2
/ (m) lim =--
n-+= 3n^2 + 1 3

n^2 +3n
./ ( o) lim 2 = -1
n-+= 10 - n

. 3
(b) hm --= 0
n-+= n + 4


11
(d) lim -- 2 = 0
n-+= 1 -n

( f) lim^2 n -^5 = 2
n-+= n - 6

2n 2
(h) lim --= --
n-+= 1 - 5n 5

(j) lim n = 0
n-+= 1 + 8n^2

r 8n
2
+ 3
(1) n~~ 5n^2 - 2n

8


  • 5


2n^2 -n
(n) lim = 2
n-+<Xl n^2 - 5n - 7

(p) lim n 2 + 6n = 0
n-+<Xl n3 - 5n + 1


  1. Use the methods of this section to prove each of the limit statements
    (a)- (p) given in Exercise 2 above.


2.2 Algebra of Limits


In this section we establish some basic rules that allow us to evaluate limits
algebraically, without resorting to c-n 0 arguments.


Theorem 2.2.1 (Absolute Value and Limits) Suppose {xn} is a sequence.
Then


(a) Xn-+ 0 {:} lxnl-+ O;


(b) Xn-+ L {:} lxn - LI-+ O;


(c) Xn-+ L =? lxnl-+ ILi. (Note: we do not claim "{:}. ")


Proof. Exercise 1. •

Definition 2.2.2 A sequence { Xn} is called a constant sequence if 3 c E JR 3
'<In E N,xn = c.

Free download pdf