596 Chapter^8
where
An= _1 J f(t)dt
27fi (t -a)n+l
(8.18-7)
C1
Similarly, for t E C 2 we have
1 1
t-z (t-a)-(z-a)
1 1
00
(t-ar-^1
= - z - a 1-(t - a)/(z -a) = - ~ (z - a)n
oo ( )-n
"'"" z-a
= - L.; (t -a)-n+l
n=l
where the series representation is now valid for t E C2, since
I
t-al= r' <l
z-a p
From (8.18-8) it follows that
f(t) = _ ~ f(t) (z -a)-n
t - z L.; (t - a)-n+l
n=l
(8.18-8)
(8.18-9)
But f(t) is analytic fort E C 2 , hence continuous. So, there is a constant
M2 > 0 such that lf(t)I < M2 for all t E C2, and we have
I
(z-a)-n I M^2 (r')n
f(t) (t - a)-n+l < 7 p
which shows, by the Weierstrass M-test, that for each z the series in (8.18-
9) converges uniformly with respect to t for t E C2. Thus, again by
Corollary 8.1, we have
_1 J f(t)dt = _ ~ (z -a)-n J f(t)dt
27fi t -z L.; 27fi (t - a)-n+l
C2 n=l C2
00
= -I: A-n(z -a)-n (8.18-10)
n=l
where
A __ 1 J f(t)dt
-n - 27fi (t - a)-n+l
C2
(8.18-11)