642 Chapter^8
defining series converges absolutely (by th~ ratio test) for all values of
z E C, and so cI>( a, c; z) is an entire function of z. This function plays a
rather important role in analysis due to the fact that a good number of
special functions are particular cases of cI>( a, c; z ).
Examples
1.
oo n
<P(a,a;z) = L; = ez
n=O n.
2.
oo zn ez -1
g~(l, 2; z) = ~ (n + 1)! = -2-
- E'irf z = r e-t2 dt = f (-lr z2n+l
lo n=O n!(2n + 1)
~ (%)n ( 2)n ;r,. ( 1 3 2)
= z ~ n!(%)n -z = Z'i! 2' 2; -z
4.
l
z • 7rt2 ~ (-l)n ( 7r )2n+l Z4n+3
S(z) = sm - dt = L; - --
0 2 n=O (2n + 1)! 2 4n + 3
= ;i [cf> ( ~ ' ~ j 7r~Z2 ) - cf> ( ~ ' ~ j - 7r~2 ) ]
LOl()=(a:+l)k~ (-k)n n=(a:+l)k;r,.(-k +l·)
k z k'.. L.t n. '( a:+ 1) n z kl. 'i! 'a: 'z
";· n=O
5.
Theorem 8.52 Th~ confluent hypergeometric function cI>( a, c; z) has the
following properties:
dm (a)m
l. dzm cI>(a,c;z) = (c)m cI>(a+m,c+m;z), m = 1,2, ...
- ccI>(a,c;z) = c<P(a -1,c; z) + zcI>(a, c + 1; z)
- cI>(a,c;z)= ( r~c) ) f
1
eztta-^1 (l-t)c-a-^1 dt, Rec>Rea>O
r arc -a lo
- cI>(a, c; z) = ez<J?(c - a,c;-z)
- zcI>" + (c - z)cI>' - acI> = 0
Proofs (1) From (8.23-1) we get
d ( ) ~ (a)n n-1 ~ (a)n+i n
d cI> a, c; z = L.t ( _ l)'( ) z = L.t '( ) z
z n=l n. c n n=O n. c n+I