424 Measure Concentration
monotonicity of the exponent function and Markov’s inequality, we have that for
everyt > 0P[Z >(1 +δ)p] =P[etZ> et(1+δ)p]≤E[etZ]
e(1+δ)tp. (B.5)
Next,E[etZ] =E[et∑
iZi] =E[∏
ietZi]=
∏
iE[etZi] by independence=
∏
i(
piet+ (1−pi)e^0)
=
∏
i(
1 +pi(et−1))
≤
∏
iepi(et−1)
using 1 +x≤ex=e∑
ipi(et−1)=e(et−1)p
.Combining the above with Equation (B.5) and choosingt= log(1 +δ) we obtainlemmaB.3 LetZ 1 ,...,Zmbe independent Bernoulli variables where for every
i,P[Zi= 1] =piandP[Zi= 0] = 1−pi. Letp=∑m
i=1piand letZ=∑m
i=1Zi.
Then, for anyδ > 0 ,P[Z >(1 +δ)p] ≤ e−h(δ)p,whereh(δ) = (1 +δ) log(1 +δ)−δ.Using the inequalityh(a)≥a^2 /(2 + 2a/3) we obtainlemmaB.4 Using the notation of Lemma B.3 we also haveP[Z >(1 +δ)p] ≤ e−p
2+2δ^2 δ/ 3
.For the other direction, we apply similar calculations:P[Z <(1−δ)p] =P[−Z >−(1−δ)p] =P[e−tZ> e−t(1−δ)p]≤E[e−tZ]
e−(1−δ)tp