Nature - 2019.08.29

(Frankie) #1

reSeArCH Letter


Guidelines for Human Embryonic Stem Cell Research (National Academies Press,
2010).


  1. Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a
    unified transcriptome signature for the human pre-implantation epiblast.
    Development 145 , dev158501 (2018).

  2. Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome
    dynamics in human preimplantation embryos. Cell 165 , 1012–1026 (2016).

  3. Nakamura, T. et al. A developmental coordinate of pluripotency among mice,
    monkeys and humans. Nature 537 , 57–62 (2016).

  4. Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in
    mouse and human embryos. Nature 552 , 239–243 (2017).

  5. Li, Y. et al. BMP4-directed trophoblast differentiation of human embryonic stem
    cells is mediated through a ΔNp63+ cytotrophoblast stem cell state.
    Development 140 , 3965–3976 (2013).

  6. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
    primary glioblastoma. Science 344 , 1396–1401 (2014).

  7. Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and
    transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26 ,
    304–319 (2016).

  8. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.).
    Nature 190 , 372–373 (1961).

  9. Deng, X. et al. Evidence for compensatory upregulation of expressed X-linked
    genes in mammals, Caenorhabditis elegans and Drosophila melanogaster.
    Nat. Genet. 43 , 1179–1185 (2011).

  10. Yildirim, E., Sadreyev, R. I., Pinter, S. F. & Lee, J. T. X-chromosome hyperactivation
    in mammals via nonlinear relationships between chromatin states and
    transcription. Nat. Struct. Mol. Biol. 19 , 56–61 (2012).
    18. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in
    chromosome conformation and transcription. Cell 157 , 950–963 (2014).
    19. Sangrithi, M. N. & Turner, J. M. A. Mammalian X chromosome dosage
    compensation: perspectives from the germ line. BioEssays 40 , 1800024 (2018).
    20. Brockdorff, N. & Turner, B. M. Dosage compensation in mammals. Cold Spring
    Harb. Perspect. Biol. 7 , a019406 (2015).
    21. Vallot, C. et al. XACT noncoding RNA competes with XIST in the control of X
    chromosome activity during human early development. Cell Stem Cell 20 ,
    102–111 (2017).
    22. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature
    511 , 606–610 (2014).
    23. Qiu, W. et al. Spatio-temporal expression of matrix metalloproteinase-26 in
    human placental trophoblasts and fetal red cells during normal placentation.
    Biol. Reprod. 72 , 954–959 (2005).
    24. Camolotto, S. et al. Expression and transcriptional regulation of individual
    pregnancy-specific glycoprotein genes in differentiating trophoblast cells.
    Placenta 31 , 312–319 (2010).
    25. Yadgary, L., Wong, E. A. & Uni, Z. Temporal transcriptome analysis of the chicken
    embryo yolk sac. BMC Genomics 15 , 690 (2014).
    26. Gerovska, D. & Araúzo-Bravo, M. J. Does mouse embryo primordial germ cell
    activation start before implantation as suggested by single-cell transcriptomics
    dynamics? Mol. Hum. Reprod. 22 , 208–225 (2016).


Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

664 | NAtUre | VOL 572 | 29 AUGUSt 2019

Free download pdf