Mathematics Times – July 2019

(Ben Green) #1
(a) Both the statements are true
(b) Both the statements are false
(c) Statement-I is true, but Statement-II is false.
(d) Statement I is false, but Statement-II is true.


  1. If


2
2
2

1 2
2 3 1 3 3 3 12,
2 3 2 1 2 1

x x x x
x x x x ax
x x x x

  
    
   

then ‘a’

is equal to [2015]
(a) 24 (b) -12 (c) -24 (d) 12
10.The least value of the product xyz for which the


determinant

1 1
1 1
1 1

x
y
z

is non-negative, is : [2015]

(a) -1 (b) 2 2 (c) 16 2 (d) -8

11.If A is a 3 3 matrix such that 5.adj 5,A then


A is equal to : [2015]

(a)

12.If  


1
5

 (b)

1
25

 (c)  1 (d)  5

1 cos 1
sin 1 cos
1 sin 1

f


  

  

and A and B

are respectively the maximum and the minimum
values of f, then (A,B) is equal to : [2014]

(a)

13.If B is a


3, 1 (b) 4,2 2 

(c) 2 2,2 2   (d) 2 2, 1 

3 3 matrix such that B^2 0, then

 
det. 1 B^50  50 B
  is equal to:^ [2014]
(a) 1 (b) 2 (c) 3 (d) 50

14.If


 
 ^2   

2 1 3 2

1
2

(^11)
1 1 3 4
2 2
r
r r r
n n a
n n
n n n
 
  

  
[2014]
(a) Depends only on a
(b) Depends only on n
(c) Depends both on a and n
(d) Is independent of both a and n



  1. If


then the value of

1

1

n
r
r






2 2 2
2 2 2
2 2 2

a b c
(a ) (b ) (c )
(a ) (b ) (c )

     
     

a b c^222
k a b c , 0
1 1 1

   then k is equal to :-[2014]

(a) 4 abc (b)   4 2 (c) 4 ^2 (d)  4 abc
16.Let A be a 3 3 matrix such that

1 2 3 0 0 1
0 2 3 1 0 0
0 1 1 0 1 0

A

   
   
   
    

Then A^1 is : [2014]

(a)

3 1 2
3 0 2
1 0 1

 
 
 
 

(b)

3 2 1
3 2 0
1 1 0

 
 
 
 

(c)

0 1 3
0 2 3
1 1 1

 
 
 
 

(d)

1 2 3
0 1 1
0 2 3

 
 
 
 


  1. If a,b,c are non-zero real numbers and if the system
    of equations [2014]
    a x y z^1    ,
    b y z x^1    ,
    c z x y^1    ,
    has a non-trivial solution, then ab bc ca 
    equals:
    (a) a b c  (b) abc (c) 2 (d) 3


18.Let  

11 12
11 22
21 22

: ij 0,1,2 ,

a a
S a a a
a a

  
    
  
Then the number of non-singular matrices in the
set S is : [2013]
(a) 27 (b) 24 (c) 10 (d) 20
19.Let A, other than I or -I be a 2 2 real matrix such
that A I^2  , I being the unit matrix. Let Tr A  be
the sum of diagonal elements of A. [2013]





[2015]





[2015]





[2015]





[2014]





[2014]





[2014]

15.

[2014]

16.

[2014]

17.
[2014]

18.

[2013]

19.

[2013]
Free download pdf