Mathematics Times – July 2019

(Ben Green) #1
For non-trivial solution, we have

i.e.,

1 1 1
1 1 1 0
1 1 1

a
b
c

  
   
  

R R R 2   2 3

1 1 1
0 0
1 1 1

a
b c
c

  
 
  

C C C 2   2 3

1 0 1
0 0
1 1

a
b c c
c c

 
  
  

Apply R R R 3   3 1

1 0 1
0 0

a
b c c
a c c

 
  
 

 a bc c c 1   ^22  1 a b c   0

abc bc ab ac    0
   ab bc ca abc

18.Sol: Given  


11 12
11 22
21 22

, ij 0,1,2 ,

a a
a a a
a a

 
   
 
Now, Det of the given matrix is
 a a a a11 22 12 21
Also given   0
 The possible det values are
   4, 3, 2, 1,1,2,3,4

 There are 20 non singular matrices

19.Sol: Let


a b
A
c d

 
 
 
given A I^2 

i.e.,

2
2

1 0
0 1

a bc ab bd
ac cd bc d

     
  
     
 a bc c ab cd^2   1;  0 ;
ac cd bc d 0 ;  ^21
Solving above equations, we get a d 
 a d  0
 Statement-1 is correct
Now detA ad bc 
Now a bc bc d^2     1 2
 a d^2 ^2
Now, we have a bc bc d^2    ^22

 a d ad bc ^2  2  2  2
i.e.,ad bc  1
 det A 1 
So statement-2 is true.


  1. Sol:


a b c a b c a b c a b c
b c a b c a
c a b c a b

     

 

1 1 1
a b c b c a
c a b

  

 

18.Sol:


19.Sol:



  1. Sol:


21.Sol:

0 0 1
a b c b c c a a
c a a b b

    
 
  a b c ab bc ca a b c     ^222 

       
   a b c a b b c c a ^2  ^2  ^2 
 
Since a,b,c are sides of a scalene triangle, therefore
at least two of the a,b,c will be unequal.
 a b b c c a ^2    ^2   ^2  0
Also a b c   0
       
   a b c a b b c c a ^2  ^2  ^2  0
 
21.Sol: Given system of equations is homogeneous
which isx ay  0
Free download pdf