(^113)
I x dx 1 0 (3)
and
1
2 0 2
1
I dx
a x
(4)
Both the integrals are easy to evaluate. Indeed,
4 1
3
1
0
3 3
[ ]
4 4
x
x
I x
(5)
and
1
2
0
[^1 ]
x
x
I
a x
(^)
7.Sol:
8.Sol:
1 1 1
a a a a 1 1
(6)
The data now reduces to a quadratic in a, viz.
a a 1 72i.e. a a^2 72 0 , whose
roots are 8 and -9.
7.Sol: Let
2 1 3
1 0 2
3 2 1
Q
then the given
equation is written interms of Q, we get
6
1
( K KT)
k
x P QP
now
6
1
T ( k KT T)
k
X PQP
We have (A B A B )T T T
6
1
T ( K KT T)
k
X P QP X
Let
1
1
1
R
, then
6
1
K KT [ KT ]
k
XR P QP R P R R
6 6
k 1 K K 1 K
P QR P QR
But
6
1
2 2 2
2 2 2
2 2 2
k PK
and
6
3
6
QR
, then
2 2 2 6 30
2 2 2 3 30 30
2 2 2 6 30
XR R
^ 30
now
6
1
Trace Trace K KT
k
X P QP
6
1
Trace(K KT) 6(Trace ) 18
k
P QP Q
i.e.,
1 1
1 30 1
1 1
X
^
1
( 30 ) 1 30 0
1
X I O X I
(^) X I 30 is non-invertible
8.Sol: (b,c,d) 2
sin
( ) ; 0
x
f x x
x
2
4
cos( ) 2 sin
'( )
x x x x
f x
x
(^44)
cos tan
cos ( 2tan ) 2 2
x x x
x x x x x
x x
1
ln 2 ,2
2
n n
the derivative goes from
positive to negative. Therefore, it’s a point of
maxima.
Similarly, in
3
ln 2 1,2
2
n n
there is a
minima.
So, the first minima 1 1
3
:1
2
y y and the first
maxima 1 1
5
: 2
2
x x and tan 1 1
2
y
y
and tan( ) 1 1
2
x
x