Mathematics Times – July 2019

(Ben Green) #1
Since x y 1  1
tan ( ) tan ( )x 1  y 1

tan ( ) tan (x 1  y 1 1) and 1

5
2 1
2

  y

Notice the function tant is increasing in

5
2,
2

 
 
 
^ x y 1   1 1
Generalising: x yn n 1 similarlyy xn 1  n 1.
Since the function is differentiable, therefore
the points of maxima and minima occur
alternately.
Therefore, x y xn n 1  n 1
Now x x x yn 1  n (n 1  n 1 ) ( y xn 1  n) using
the foregoing proofs every quantity inside these
brackets is greater than 1. Therefore,
x xn 1  n 2.

SECTION-II
9.Sol: Given that


2 1

1

( 1)
( 1)2 2
2 0
2 4

n n

n n

n n
n n n

n

 



  


( 1)^2 ( 1)^2
0
2 8 4

n n n n n
   

^ n 0 or 4( 1) ( 1) 2 0n n n  n
i.e., n 4

now

4 4 4 5
1
0 1 0 5

k k
k k

C C
k


 


  



2 1 31^5
6.20
5 5


 

10.Sol: call the expression in the parentheses as
E. As a first measure of simplification we
replace the secants by cosines which we are
more comfortable with. Thus


 


10
0

1 1
4 7 7 1
cos cos
12 12 12 2

k

E
  k  k 


    
     
   


(1)

we notice that the denominator of each term

is of the form cos cos where
2


  .

As a result, cos sin and the product
cos sin  is a amenable to a simplification.
So,
10

0

1 1
2 7 7
2cos sin
12 12 12 2

k

E
  k  k

 
     
   
   


10
0

1 1
2 7
sin
6

k  k

 
  
 
 


 

10
0

1 1

(^2) sin 1
6
k k  
 
   
 
 


 (2)


As kis an integer, we can apply the (half)
periodicity of the sine function, whereby

(^) sink    1 sink  (3)
Using this and the fact that
1
sin
6 2
 
 
 
, E
further simplifies to
 
10
0 1
1 1
(^2) 1 sin
6
k k
E
  
 
  
 
 



 

(^101)
0
1
k
k


  


 

10

0

1

k
k

 (4)


This is a sum of 11 terms alternately 1 and -1,
the first term being 1. So the sum is 1. Hence
E 1.

The (unique) angle

SECTION-II
9.Sol:


10.Sol:


11.Sol:

3
,
4 4

 
  
 

with

sec 1 is 0.
11.Sol: Given that C a b R  , 

  

i.e., a b c ,
 
are coplanar
Free download pdf