Since x y 1 1
tan ( ) tan ( )x 1 y 1tan ( ) tan (x 1 y 1 1) and 15
2 1
2 yNotice the function tant is increasing in5
2,
2
^ x y 1 1 1
Generalising: x yn n 1 similarlyy xn 1 n 1.
Since the function is differentiable, therefore
the points of maxima and minima occur
alternately.
Therefore, x y xn n 1 n 1
Now x x x yn 1 n (n 1 n 1 ) ( y xn 1 n) using
the foregoing proofs every quantity inside these
brackets is greater than 1. Therefore,
x xn 1 n 2.SECTION-II
9.Sol: Given that
2 11( 1)
( 1)2 2
2 0
2 4n nn nn n
n n nn
( 1)^2 ( 1)^2
0
2 8 4n n n n n
^ n 0 or 4( 1) ( 1) 2 0n n n n
i.e., n 4now4 4 4 5
1
0 1 0 5k k
k kC C
k
2 1 31^5
6.20
5 5
10.Sol: call the expression in the parentheses as
E. As a first measure of simplification we
replace the secants by cosines which we are
more comfortable with. Thus
10
01 1
4 7 7 1
cos cos
12 12 12 2kE
k k
(1)we notice that the denominator of each termis of the form cos cos where
2
.As a result, cos sin and the product
cos sin is a amenable to a simplification.
So,
1001 1
2 7 7
2cos sin
12 12 12 2kE
k k
10
01 1
2 7
sin
6k k
10
01 1(^2) sin 1
6
k k
(2)
As kis an integer, we can apply the (half)
periodicity of the sine function, whereby(^) sink 1 sink (3)
Using this and the fact that
1
sin
6 2
, E
further simplifies to
10
0 1
1 1
(^2) 1 sin
6
k k
E
(^101)
0
1
k
k
1001k
k (4)
This is a sum of 11 terms alternately 1 and -1,
the first term being 1. So the sum is 1. Hence
E 1.The (unique) angleSECTION-II
9.Sol:
10.Sol:
11.Sol:3
,
4 4
withsec 1 is 0.
11.Sol: Given that C a b R , i.e., a b c ,
are coplanar