Mathematics Times – July 2019

(Ben Green) #1

(^113)


I x dx 1  0 (3)


and  

1
2 0 2

1
I dx
a x


  (4)


Both the integrals are easy to evaluate. Indeed,

4 1
3
1
0

3 3
[ ]
4 4

x

x

I x



  (5)

and

1
2
0

[^1 ]

x

x

I
a x



 

(^)  
7.Sol:
8.Sol:
1 1 1
a a a a 1 1
  
  (6)
The data now reduces to a quadratic in a, viz.
a a  1 72i.e. a a^2  72 0 , whose
roots are 8 and -9.
7.Sol: Let
2 1 3
1 0 2
3 2 1
Q
 
 
 
 
then the given
equation is written interms of Q, we get
6
1
( K KT)
k
x P QP





now

6

1

T ( k KT T)
k

X PQP




We have (A B A B )T T T
6

1

T ( K KT T)
k

X P QP X

  


Let

1
1
1

R

 
 
 
  

, then

6

1
K KT [ KT ]
k

XR P QP R P R R

  


6 6
k 1 K K 1 K

P QR P QR
 

  

  


But

6
1

2 2 2
2 2 2
2 2 2

k PK

 
 
 
 

 and


6
3
6

QR

 
 
 
  

, then

2 2 2 6 30
2 2 2 3 30 30
2 2 2 6 30

XR R

     
      
     
         

^  30

now

6

1

Trace Trace K KT
k

X P QP

  
 
 


6

1

Trace(K KT) 6(Trace ) 18
k

P QP Q

  


i.e.,

1 1
1 30 1
1 1

X

   
   
   
     

^

1
( 30 ) 1 30 0
1

X I O X I

 
     
 
  

 (^) X I 30 is non-invertible
8.Sol: (b,c,d) 2
sin
( ) ; 0
x
f x x
x

 
2
4
cos( ) 2 sin
'( )
x x x x
f x
x
   

(^44)
cos tan
cos ( 2tan ) 2 2
x x x
x x x x x
x x
  
  
  
  
 
1
ln 2 ,2
2
 n n 
 
the derivative goes from
positive to negative. Therefore, it’s a point of
maxima.
Similarly, in
3
ln 2 1,2
2
 n n  
 
there is a
minima.
So, the first minima 1 1
3
:1
2
y y  and the first
maxima 1 1
5
: 2
2
x x  and tan 1 1
2
y
y

 
and tan( ) 1 1
2
x
x

 

Free download pdf