562 12.CONTINUOUSLATENTVARIABLESchapter,weshallconsidertechniquestodetermineanappropriatevalueofIV!from
thedata.
Tobeginwith,considertheprojectionontoa one-dimensionalspace(M= 1).
Wecandefinethedirectionofthisspaceusinga D-dimensionalvectorUl,which
forconvenience(andwithoutlossofgenerality)weshallchoosetobea unitvectorsothatufUl = 1 (notethatweareonlyinterestedinthedirectiondefinedbyUl,
notinthemagnitudeofUlitself).EachdatapointXnisthenprojectedontoa scalar
valueufXn.Themeanoftheprojecteddataisufxwherex is thesamplesetmean
givenby(12.1)andthevarianceoftheprojecteddatais givenbywhereS is thedatacovariancematrixdefinedby1 N
S= -NLJ"(xn- x)(xn- x)T.
n=l(12.2)
(12.3)
AppendixE
WenowmaximizetheprojectedvarianceUfSUlwithrespecttoUl.Clearly,thishastobea constrainedmaximizationtopreventIlulll.....00.Theappropriateconstraint
comesfromthenormalizationconditionufUl = 1. Toenforcethisconstraint,
weintroducea LagrangemultiplierthatweshalldenotebyAI,andthenmakean
unconstrainedmaximizationof(12.4)BysettingthederivativewithrespecttoUlequaltozero,weseethatthisquantity
willhavea stationarypointwhen( 12.5)whichsaysthatUlmustbeaneigenvectorofS.Ifweleft-multiplybyufandmake
useofufUl= 1,weseethatthevarianceis givenby
(12.6)
andsothevariancewillbea maximumwhenwesetUlequaltotheeigenvector
havingthelargesteigenvalueAI. Thiseigenvectorisknownasthefirstprincipal
component.
Wecandefineadditionalprincipalcomponentsinanincrementalfashionby
choosingeachnewdirectiontobethatwhichmaximizestheprojectedvariance