Pattern Recognition and Machine Learning

(Jeff_L) #1
Exercise 12.1

Section12.2.2

AppendixC


12.1.PrincipalComponentAnalysis 563

amongstallpossibledirectionsorthogonaltothosealreadyconsidered.Ifwecon-
siderthegeneralcaseofanM-dimensionalprojectionspace,theoptimallinearpro-
jectionforwhichthevarianceoftheprojecteddataismaximizedisnowdefinedby

theMeigenvectorsU1,..., UMofthedatacovariancematrixS correspondingtothe


Mlargesteigenvalues>'1,... ,AM.Thisis easilyshownusingproofbyinduction.


Tosummarize,principalcomponentanalysisinvolvesevaluatingthemeanx


andthecovariancematrixSofthedatasetandthenfindingtheM eigenvectorsofS
correspondingtotheMlargesteigenvalues.Algorithmsforfindingeigenvectorsand
eigenvalues,aswellasadditionaltheoremsrelatedtoeigenvectordecomposition,
canbefoundinGolubandVanLoan(1996). Notethatthecomputationalcostof

computingthefulleigenvectordecompositionfora matrixofsizeDxDisO(D3).


IfweplantoprojectourdataontothefirstM principalcomponents,thenweonly
needtofindthefirstMeigenvaluesandeigenvectors.Thiscanbedonewithmore
efficienttechniques,suchasthepowermethod(GolubandVanLoan,1996),that
scalelikeO(MD^2 ),oralternativelywecanmakeuseoftheEMalgorithm.

12.1.2 Minimum-error formulation


WenowdiscussanalternativeformulationofpeAbasedonprojectionerror
minimization.Todothis,weintroducea completeorthonormalsetofD-dimensional

basisvectors{Ui}wherei= 1,...,Dthatsatisfy


(12.7)

Becausethisbasisis complete,eachdatapointcanberepresentedexactlybya linear
combinationofthebasisvectors
D
Xn= Laniui
i=l

(12.8)

wherethecoefficientsaniwillbedifferentfordifferentdatapoints. Thissimply
correspondstoa rotationofthecoordinatesystemtoa newsystemdefinedbythe

{Ui},andtheoriginalDcomponents{Xnl'...,XnD}arereplacedbyanequivalent


set{anl'...,anD}.TakingtheinnerproductwithUj,andmakinguseoftheor-


thonormalityproperty,weobtainanj= x;Uj,andsowithoutlossofgeneralitywe
canwrite
D
Xn= L (X~Ui)Ui·
i=l

(12.9)

(12.10)

Ourgoal,however,istoapproximatethisdatapointusinga representationin-
volvinga restrictednumberM <Dofvariablescorrespondingtoa projectiononto
a lower-dimensionalsubspace. TheM-dimensionallinearsubspacecanberepre-
sented,withoutlossofgenerality,bythefirstM ofthebasisvectors,andsowe
approximateeachdatapointXnby
M D
xn=L ZniUi+ L biUi
i=l i=M+l
Free download pdf