ChapterIELEMENTARY THEORY OF PROBABILITYWedefine as elementary theory ofprobability that partofthetheoryinwhichwehavetodeal withprobabilitiesofonlya
finitenumberofevents.Thetheoremswhichwederiveherecan
beappliedalsototheproblemsconnectedwith
aninfinitenumberof randomevents.However, whenthelatterare
studied, essen-tiallynewprinciplesareused.Thereforetheonlyaxiomofthe
mathematicaltheoryofprobabilitywhichdealsparticularly
withthecaseofaninfinitenumberofrandomeventsisnotintroduced
untilthebeginningofChapterII (Axiom VI).
Thetheory ofprobability,
as amathematicaldiscipline,canandshould bedeveloped fromaxioms in
exactlythesame wayasGeometryandAlgebra.Thismeansthatafterwehave
definedthe elements tobe studied andtheir basicrelations, andhave
stated theaxiomsbywhichthese relationsaretobegoverned,
allfurtherexposition
mustbebased
exclusivelyontheseaxioms,independentoftheusualconcretemeaningofthese
elementsandtheirrelations.
Inaccordancewiththeabove,in
§1 theconceptofa
fieldofprobabilitiesisdefinedasasystemofsetswhichsatisfiescertain
conditions.Whattheelementsofthissetrepresentis ofnoim-portanceinthe
purelymathematical developmentofthetheoryofprobability
(cf.theintroduction ofbasicgeometric conceptsintheFoundations
ofGeometrybyHilbert,orthedefinitionsofgroups,ringsandfieldsinabstractalgebra).Everyaxiomatic (abstract) theoryadmits,
asiswellknown,ofanunlimitednumberofconcreteinterpretationsbesidesthosefromwhichit
wasderived.Thuswefindapplicationsinfieldsofscience which
havenorelationtotheconceptsofrandomeventandof
probabilityintheprecisemeaningofthesewords.Thepostulationalbasis of the theory of probability can beestablished bydifferent methods in respect totheselection ofaxiomsaswellasintheselectionofbasicconcepts
andrelations.However,ifouraimistoachievetheutmostsimplicity
bothin