2
I.
ElementaryTheory
ofProbabilitythe system of axioms and in the further
development of the
theory,then thepostulationalconcepts of
a
randomevent anditsprobabilityseemthemost
suitable.
Thereareotherpostula-tionalsystemsofthetheoryof
probability,particularly
thoseinwhichtheconceptofprobabilityisnottreatedasoneofthebasic
concepts, but is itself expressed by means of other concepts.
1However, inthatcase,theaimis different,namely,totieupas
closelyas possiblethemathematical theorywith theempirical
development ofthetheoryofprobability.
§1.Axioms2LetEbeacollectionofelements
(
trj,
£,..
.,whichweshallcallelementaryevents,and
gasetofsubsetsofE;theelementsoftheset
gwillbecalledrandomevents.I.
5 isafield3ofsets.II.
gcontainsthesetE.III. ToeachsetAin%isassignedanon-negativerealnumberP(A).ThisnumberP(A) iscalledtheprobability
oftheeventA.IV.
P(E) equals 1.V.
//AandBhavenoelementin
common,thenP(A
+B)=P(A)+P(B)Asystemof
sets,
$,togetherwith a definiteassignmentofnumbersP(A),satisfying
AxiomsI-V,iscalleda
fieldofprob-ability.OursystemofAxiomsI-Visconsistent.This
isprovedbythefollowingexample.LetEconsist
ofthesingleelement$andletgconsistofEandthe
nullset0. P(E) isthensetequalto 1 andP(0) equals0.1Forexample,R.von
Mises[l]and
[2]andS.Bernstein[1].2Thereaderwhowishesfromtheoutsettogiveaconcretemeaningtothefollowingaxioms,isreferredto
§2.3Cf.Hausdorff,Mengenlehre,
1927,p.78.Asystemofsetsiscalledafieldifthesum,product,anddifferenceoftwosetsofthesystemalsobelongtothesamesystem.Everynon-emptyfieldcontainsthenullset0.UsingHausdorff'snotation,we
designatetheproductofAandBbyAB;thesum
byA+
BinthecasewhereAB—
0;andinthegeneralcasebyA+B;thedifference
ofAandBbyA-B.ThesetE-A,whichisthecomplementofA,willbedenotedbyK.Weshallassumethatthereaderisfamiliarwiththefundamentalrulesofoperationsofsetsandtheirsums,products,anddifferences. Allsubsetsof
gwillbedesignatedbyLatincapitals.