2
I.
ElementaryTheory
of
Probability
the system of axioms and in the further
development of the
theory,then thepostulationalconcepts of
a
randomevent and
itsprobabilityseemthemost
suitable.
Thereare
otherpostula-
tionalsystemsofthetheoryof
probability,particularly
those
in
whichtheconceptofprobabilityisnottreatedasoneofthebasic
concepts, but is itself expressed by means of other concepts.
1
However, inthatcase,theaimis different,namely,totieupas
closelyas possiblethemathematical theorywith theempirical
development ofthetheoryofprobability.
§
1.
Axioms
2
LetEbeacollectionofelements
(
t
rj,
£,
..
.
,whichweshallcall
elementaryevents,and
g
asetofsubsetsofE;theelementsof
theset
g
willbecalledrandomevents.
I.
5 isafield
3
of
sets.
II.
g
containsthesetE.
III. ToeachsetAin%isassignedanon-negativerealnumber
P(A).ThisnumberP(A) iscalledtheprobability
of
theeventA.
IV.
P(E) equals 1.
V.
//
AandBhavenoelementin
common,then
P(A
+B)=P(A)+P(B)
Asystemof
sets,
$,
togetherwith a definiteassignmentof
numbersP(A),satisfying
AxiomsI-V,iscalleda
fieldof
prob-
ability.
OursystemofAxiomsI-Visconsistent.This
isprovedbythe
followingexample.LetEconsist
ofthesingleelement$andlet
g
consistofEandthe
nullset0. P(E) isthensetequalto 1 and
P(0) equals0.
1
Forexample,R.von
Mises[l]and
[2]
andS.Bernstein[1].
2
Thereaderwhowishesfromtheoutsettogiveaconcretemeaningto
the
followingaxioms,isreferredto
§
2.
3
Cf.Hausdorff,Mengenlehre,
1927,p.
78.Asystemofsetsiscalledafield
ifthesum,product,anddifferenceoftwosetsofthesystemalsobelongtothe
samesystem.Everynon-emptyfieldcontainsthenullset0.UsingHausdorff's
notation,
we
designatetheproductofAandBbyAB;the
sum
byA
+
B
in
thecasewhereAB
—
0;andinthegeneralcasebyA+B;the
difference
of
AandBbyA-B.ThesetE-A,whichisthecomplementofA,willbedenoted
byK.Weshallassumethatthereaderisfamiliarwiththefundamentalrules
ofoperationsofsetsandtheirsums,products,anddifferences. Allsubsets
of
g
willbedesignatedbyLatincapitals.