§
2.TheRelationtoExperimental
Data
3
Oursystem
ofaxiomsisnot,however,complete,forin
various
problems in the
theory of probabilitydifferent fieldsof proba-
bilityhavetobeexamined.
TheConstruction
of
Fields
of
Probability.Thesimplestfields
ofprobabilityareconstructedas
follows.Wetakeanarbitrary
finitesetE
=
{|
t
,£
2
,
..
.,£*}
andanarbitraryset
{p
ltp 2
,
..
.,
pk
)
ofnon-negativenumbers withthesum
Pi
+
p 2
+•• •+
Pk
—
1.
g
istakenasthesetofallsubsetsinE,andweput
P{ft
i
,^,...,^}
=
^
i
+
fc
+
v
+^.
Insuchcases,
p
up 2 ,
...
,
p
k
arecalledthe
probabilities
of
the
elementaryevents
$
1}£ 2 ,
...
,$k
orsimplyelementary
probabili-
ties.Inthiswayarederivedallpossible
finite
fieldsofprobability
inwhich
gf
consists ofthesetofallsubsetsofE. (Thefieldof
probability
is
called
finite
if the set E is finite.) For further
examplesseeChap.II,
§
3.
§
- TheRelationtoExperimental
Data
4
We apply the theory of probabilityto the actual world
of
experimentsinthefollowingmanner:
1)
Thereisassumedacomplexofconditions,
©,
whichallows
ofanynumberofrepetitions.
2) Westudyadefinitesetofevents
which
couldtake
placeas
aresultofthe establishmentofthe conditionsS. In
individual
caseswheretheconditionsarerealized,theeventsoccur,
gener-
ally,indifferentways. LetEbethesetofallpossiblevariants
d,&,
...oftheoutcomeofthegivenevents.Someofthesevari-
antsmightingeneralnotoccur.WeincludeinsetEallthevari-
antswhichweregardaprioriaspossible.
3)
Ifthevariantof theevents which
hasactuallyoccurred
4
Thereaderwhoisinterested
inthe
purely
mathematical
developmentof
thetheoryonly,neednotreadthissection,since
the
workfollowing
itis
based
onlyupontheaxiomsin
§
1 andmakes
nouseofthe
presentdiscussion.Here
welimitourselves
toa
simpleexplanation
ofhowtheaxiomsofthetheory
of
probability
aroseanddisregardthedeepphilosophicaldissertationsonthe
conceptofprobabilityintheexperimentalworld.Inestablishingthepremises
necessary
fortheapplicabilityofthetheoryofprobabilitytotheworldof
actualevents,theauthorhasused,inlargemeasure,theworkofR.v.Mises,
[1]pp.
21-27.