Foundations of the theory of probability

(Jeff_L) #1

10 I. ElementaryTheoryofProbability


Amongtherequationsin
(2),


thereareonlyr-r
1

-r
2





..

.
-r
n

+

n



  • 1 independent equations


8

.

Theorem I. Ifnexperiments
9l

(1

\5l

(2)

,

...
,2i

(M

>aremutu-

allyindependent,


thenany
m

ofthem
(ra<n)
,

9l

(t,)

,$

(
**\

....5(

(

'm)

>

arealsoindependent


9

.

Inthecaseofindependencewethenhavetheequations

:

p«4«••


  • 4i


B>

)

=
p

(O

p
C^SW


  • ••p


(41-*)

(

g
)

(all
4

mustbedifferent.)

DefinitionII.neventsA
u

A
2 ,

..
.

,A
n

aremutuallyindepen-

dent,ifthedecompositions (trials)


E

=
A
k

+A
k

(k

=
l,2,...,n)

areindependent.


Inthiscaser
x

=
r
2

=
...

=
r
n

=

2,

r

=
2

n

;

therefore,ofthe 2

W

equationsin
(2)


only 2

n

-n-lare independent.Thenecessary

andsufficient
conditionsfortheindependenceoftheeventsA
lt


A
2 ,

..
.

,A
n

arethefollowing 2

n


  • n

    • 1 equations




10

:

P(A

{l

A

i2

...A

im)

=P(A

il

)P(A

i2

)...P(A,

im),

(4)

m


1,2,

..
.,

n,

i^i

1

<i

2

<--<i

m

<n.

All
of


these
equationsaremutuallyindependent.

Inthecasen


=
2 weobtainfrom
(4)

onlyonecondition
(2

2

-2





8

Actually, inthecaseofindependence,onemaychoosearbitrarilyonly

fi


+
r* 2

+
...

+t

n

probabilities

p

U)
=

P

{A

U)

)

soas to complywith the n

conditions


7

"

<i

Therefore,inthegeneralcase,wehaver-1degreesoffreedom,butinthe


caseofindependenceonlyri+r
2


+...+r

n

-n.

9

Toprovethisitis
sufficientto

show
that

fromthe
mutual

independence

ofndecompositionsfollowsthemutualindependence

ofthefirstn-1.Letus

assumethattheequations
(2)

hold.Then

p

(«.

..

<-»,)

=Jp

(«•




<)

Qn

9n

Q.E.D.

10

SeeS.N.Bernstein
[1]pp.

47-57.However,
the

reader
can

easilyprove

thishimself(usingmathematicalinduction).

Free download pdf