10 I. ElementaryTheoryofProbability
Amongtherequationsin
(2),
thereareonlyr-r
1
-r
2
..
.
-r
n
+
n
- 1 independent equations
8
.
Theorem I. Ifnexperiments
9l
(1
\5l
(2)
,
...
,2i
(M
>aremutu-
allyindependent,
thenany
m
ofthem
(ra<n)
,
9l
(t,)
,$
(
**\
....5(
(
'm)
>
arealsoindependent
9
.
Inthecaseofindependencewethenhavetheequations
:
p«4«••
- 4i
B>
)
=
p
(O
p
C^SW
- ••p
(41-*)
(
g
)
(all
4
mustbedifferent.)
DefinitionII.neventsA
u
A
2 ,
..
.
,A
n
aremutuallyindepen-
dent,ifthedecompositions (trials)
E
=
A
k
+A
k
(k
=
l,2,...,n)
areindependent.
Inthiscaser
x
=
r
2
=
...
=
r
n
=
2,
r
=
2
n
;
therefore,ofthe 2
W
equationsin
(2)
only 2
n
-n-lare independent.Thenecessary
andsufficient
conditionsfortheindependenceoftheeventsA
lt
A
2 ,
..
.
,A
n
arethefollowing 2
n
- n
- 1 equations
10
:
P(A
{l
A
i2
...A
im)
=P(A
il
)P(A
i2
)...P(A,
im),
(4)
m
—
1,2,
..
.,
n,
i^i
1
<i
2
<--<i
m
<n.
All
of
these
equationsaremutuallyindependent.
Inthecasen
=
2 weobtainfrom
(4)
onlyonecondition
(2
2
-2
8
Actually, inthecaseofindependence,onemaychoosearbitrarilyonly
fi
+
r* 2
+
...
+t
n
probabilities
p
U)
=
P
{A
U)
)
soas to complywith the n
conditions
7
"
<i
Therefore,inthegeneralcase,wehaver-1degreesoffreedom,butinthe
caseofindependenceonlyri+r
2
+...+r
n
-n.
9
Toprovethisitis
sufficientto
show
that
fromthe
mutual
independence
ofndecompositionsfollowsthemutualindependence
ofthefirstn-1.Letus
assumethattheequations
(2)
hold.Then
p
(«.
..
<-»,)
=Jp
(«•
- •
<)
Qn
9n
Q.E.D.
10
SeeS.N.Bernstein
[1]pp.
47-57.However,
the
reader
can
easilyprove
thishimself(usingmathematicalinduction).