10 I. ElementaryTheoryofProbability
Amongtherequationsin
(2),
thereareonlyr-r
1-r
2...
-r
n+n
- 1 independent equations
8.Theorem I. Ifnexperiments
9l(1\5l(2),...
,2i(M>aremutu-allyindependent,
thenany
mofthem
(ra<n)
,9l(t,),$(
**\....5(('m)>arealsoindependent
9.Inthecaseofindependencewethenhavetheequations:p«4«••
- 4i
B>)=
p(O
p
C^SW- ••p
(41-*)(g
)(all
4mustbedifferent.)DefinitionII.neventsA
uA
2 ,..
.,A
naremutuallyindepen-dent,ifthedecompositions (trials)
E=
A
k+A
k(k=
l,2,...,n)areindependent.
Inthiscaser
x=
r
2=
...=
r
n=2,r=
2n;therefore,ofthe 2Wequationsin
(2)
only 2n-n-lare independent.Thenecessaryandsufficient
conditionsfortheindependenceoftheeventsA
lt
A
2 ,..
.,A
narethefollowing 2n- n
- 1 equations
10:P(A{lAi2...Aim)=P(Ail)P(Ai2)...P(A,im),(4)m—1,2,..
.,n,i^i1<i2<--<im<n.All
of
these
equationsaremutuallyindependent.Inthecasen
=
2 weobtainfrom
(4)onlyonecondition
(22-28Actually, inthecaseofindependence,onemaychoosearbitrarilyonlyfi
+
r* 2+
...+tnprobabilitiespU)
=P{AU))soas to complywith the nconditions
7"<iTherefore,inthegeneralcase,wehaver-1degreesoffreedom,butinthe
caseofindependenceonlyri+r
2
+...+rn-n.9Toprovethisitis
sufficienttoshow
thatfromthe
mutualindependenceofndecompositionsfollowsthemutualindependenceofthefirstn-1.Letusassumethattheequations
(2)hold.Thenp(«.
..<-»,)=Jp(«•
- •
<)Qn9nQ.E.D.10SeeS.N.Bernstein
[1]pp.47-57.However,
thereader
caneasilyprovethishimself(usingmathematicalinduction).