§
- Independence 11
1
=
1) fortheindependenceoftwoeventsA
x
andA
2
:
?UiA 2 )
=P(A
1
)P(A
2
). (5)
Thesystemofequations
(2)
reducesitself
}
inthiscase,tothree
equations,besides
(5)
:
PiAiAz)
=
P(A
1
)P(A
2 )
?{A
X
A
2 )
=P(A
1
)P(A
a
)
?{A
X
A
2 )
=P(A
1
)P(A
2 ) ,
which obviouslyfollow from
(5).
11
Itneed hardlyberemarked thatfrom theindependence of
theeventsA
lt
A
2
,
..
.
,A
n
inpairs,i.e.fromtherelations
P(A«A,) =P(A
i
)P(A
i
)
«*>
itdoesnotatallfollowthat whenn>2 theseevents are
inde-
pendent
12
. (Forthatweneedtheexistenceofallequations (4).)
Inintroducingtheconceptofindependence,nousewasmade
ofconditionalprobability.Ouraimhasbeentoexplainasclearly
aspossible,in
a
purely
mathematicalmanner,themeaning
ofthis
concept. Its applications,
however,
generally
depend upon
the
propertiesofcertainconditionalprobabilities.
IfweassumethatallprobabilitiesP(A
g
(t
>) are
positive,then
fromtheequations
(3)
itfollows
13
that
P«>
...
4;;«>
MM
=P(4?)
. (6)
Fromthefactthatformulas
(6)
hold,andfromtheMultiplica-
tionTheorem (Formula
(7), §4),
follow
the
formulas
(2).We
obtain,therefore,
Theorem
II: A necessaryandsufficientcondition for
inde-
pendence
of
experiments5l
(1)
,
5l
(2)
,
...
,
9l
(w)
inthecase
of
posi-
11
P{4iZj
- P(A
X
)
- P{A
t
A
2
)
a*
P{A
X
)
- P(A^9{A
%
)
=
P(^){t
- P(^
2 )}
»P(4
1
)P(i"
a
)
,etc.
12
Thiscanbeshownbythefollowingsimpleexample(S.N.Bernstein)
:
LetsetEbecomposedoffourelements
J
1
,£
2
,£
3
,
<£,
;thecorrespondingelemen-
taryprobabilities
p
it
p
2
,p
3
,p
4
areeachassumedtobe
X
A
and
A
={^,^}r
JB-Wj.W. C'^ft.W,
Itiseasytocomputethat
P(A)
=
P(B)=P(C)
="%,
P(AB)=P(BC)
-P(AC)
=
%
=
(V 2
)
2
,
P(A£C)=.14
*(V 2
)
3
.
u
Toproveit,onemustkeepinmind
thedefinitionofconditionalproba-
bility(Formula
(5),§4)andsubstitutefortheprobabilitiesofproductsthe
productsof
probabilitiesaccordingtoformula
(3).