Foundations of the theory of probability

(Jeff_L) #1
§


  1. Independence 11


1

=
1) fortheindependenceoftwoeventsA
x

andA
2

:

?UiA 2 )

=P(A
1

)P(A
2

). (5)

Thesystemofequations
(2)

reducesitself

}

inthiscase,tothree

equations,besides
(5)

:

PiAiAz)

=
P(A
1

)P(A
2 )

?{A
X

A
2 )

=P(A
1

)P(A
a
)

?{A

X

A
2 )

=P(A

1

)P(A
2 ) ,

which obviouslyfollow from
(5).

11

Itneed hardlyberemarked thatfrom theindependence of

theeventsA
lt

A

2

,

..

.

,A

n

inpairs,i.e.fromtherelations

P(A«A,) =P(A
i

)P(A

i

)

«*>

itdoesnotatallfollowthat whenn>2 theseevents are

inde-

pendent

12

. (Forthatweneedtheexistenceofallequations (4).)


Inintroducingtheconceptofindependence,nousewasmade

ofconditionalprobability.Ouraimhasbeentoexplainasclearly

aspossible,in
a

purely
mathematicalmanner,themeaning

ofthis

concept. Its applications,
however,

generally
depend upon

the

propertiesofcertainconditionalprobabilities.

IfweassumethatallprobabilitiesP(A

g

(t

>) are

positive,then

fromtheequations
(3)

itfollows

13

that

P«>

...
4;;«>

MM

=P(4?)

. (6)


Fromthefactthatformulas
(6)

hold,andfromtheMultiplica-

tionTheorem (Formula

(7), §4),

follow
the

formulas
(2).We

obtain,therefore,

Theorem
II: A necessaryandsufficientcondition for

inde-

pendence
of

experiments5l

(1)

,

5l

(2)

,

...
,

9l

(w)

inthecase
of

posi-

11

P{4iZj


  • P(A


X

)


  • P{A


t

A

2

)

a*
P{A

X

)


  • P(A^9{A


%

)

=
P(^){t


  • P(^
    2 )}


»P(4
1


)P(i"

a

)

,etc.

12

Thiscanbeshownbythefollowingsimpleexample(S.N.Bernstein)

:

LetsetEbecomposedoffourelements
J
1


2


3

,
<£,

;thecorrespondingelemen-

taryprobabilities

p

it
p

2
,p

3
,p

4

areeachassumedtobe

X

A

and

A
={^,^}r
JB-Wj.W. C'^ft.W,

Itiseasytocomputethat

P(A)

=
P(B)=P(C)

="%,

P(AB)=P(BC)
-P(AC)

=
%

=
(V 2
)

2

,

P(A£C)=.14
*(V 2
)

3

.

u

Toproveit,onemustkeepinmind
thedefinitionofconditionalproba-

bility(Formula
(5),§4)andsubstitutefortheprobabilitiesofproductsthe

productsof
probabilitiesaccordingtoformula
(3).
Free download pdf