§- Independence 11
1=
1) fortheindependenceoftwoeventsA
xandA
2:?UiA 2 )=P(A
1)P(A
2). (5)Thesystemofequations
(2)reducesitself}inthiscase,tothreeequations,besides
(5):PiAiAz)=
P(A
1)P(A
2 )?{A
XA
2 )=P(A
1)P(A
a
)?{AXA
2 )=P(A1)P(A
2 ) ,which obviouslyfollow from
(5).11Itneed hardlyberemarked thatfrom theindependence oftheeventsA
ltA2,...,Aninpairs,i.e.fromtherelationsP(A«A,) =P(A
i)P(Ai)«*>itdoesnotatallfollowthat whenn>2 theseevents areinde-pendent12. (Forthatweneedtheexistenceofallequations (4).)
Inintroducingtheconceptofindependence,nousewasmadeofconditionalprobability.Ouraimhasbeentoexplainasclearlyaspossible,in
apurely
mathematicalmanner,themeaningofthisconcept. Its applications,
however,generally
depend uponthepropertiesofcertainconditionalprobabilities.IfweassumethatallprobabilitiesP(Ag(t>) arepositive,thenfromtheequations
(3)itfollows13thatP«>...
4;;«>MM
=P(4?). (6)
Fromthefactthatformulas
(6)hold,andfromtheMultiplica-tionTheorem (Formula(7), §4),follow
theformulas
(2).Weobtain,therefore,Theorem
II: A necessaryandsufficientcondition forinde-pendence
ofexperiments5l(1),5l(2),...
,9l(w)inthecase
ofposi-11P{4iZj- P(A
X)- P{A
tA2)a*
P{AX)- P(A^9{A
%)=
P(^){t- P(^
2 )}
»P(4
1
)P(i"a),etc.12Thiscanbeshownbythefollowingsimpleexample(S.N.Bernstein):LetsetEbecomposedoffourelements
J
1,£
2,£
3,
<£,;thecorrespondingelemen-taryprobabilitiespit
p2
,p3
,p4areeachassumedtobeXAandA
={^,^}r
JB-Wj.W. C'^ft.W,ItiseasytocomputethatP(A)=
P(B)=P(C)="%,P(AB)=P(BC)
-P(AC)=
%=
(V 2
)2,P(A£C)=.14
*(V 2
)3.uToproveit,onemustkeepinmind
thedefinitionofconditionalproba-bility(Formula
(5),§4)andsubstitutefortheprobabilitiesofproductstheproductsof
probabilitiesaccordingtoformula
(3).