12 I. ElementaryTheoryofProbabilityfive probabilitiesP(A^})is that the conditional probability
ofthe resultsAqwofexperiments
3t(i'>under the hypothesis
thatseveral other tests 2l
(il),9l(i,),...,Wik)have hod
definiteresultsA&\AM,A
i**>,...,A{£)is equal
to the absolute probabilityOnthebasisofformulas (4) wecanproveinananalogousmannerthefollowingtheorem:Theorem III. //allprobabilitiesP(A
k)arepositive, then
anecessary and
sufficientcondition
formutual
independence
oftheeventsAltA2i...,Anisthe
satisfactionoftheequationsP,iA...^(A)=PW
(7)for
anypairwisedifferenti
lti
2 ,. ..
,
i
k,i-Inthecasen—
2 theconditions
(7)reducetotwo
equations:PAl(A2)=
P(A2 )f|PAAA
l)=
P(A1). JItiseasytoseethatthefirstequationin
(8)aloneisanecessaryandsufficientconditionfortheindependenceofA
xandA
2pro-videdP(A
1 ) >0.§- ConditionalProbabilitiesasRandomVariables,
MarkovChainsLet 51 beadecompositionofthefundamentalsetE:E=
A*+A
2+...+A
r,andxarealfunctionoftheelementaryevent£TwhichforeverysetAqisequalto
acorrespondingconstantaq.xis
thencalledarandom
variable,andthesumE(x) -2aQP(A5)Qis called themathematical expectation of the variable x. ThetheoryofrandomvariableswillbedevelopedinChaps.IllandIV.Weshallnotlimitourselvestheremerelytothoserandomvari-ableswhichcanassumeonlyafinitenumberofdifferentvalues.ArandomvariablewhichforeverysetAqassumesthevaluePAqi(B),weshallcall theconditionalprobability
oftheeventBafterthegivenexperiment%andshalldesignateitbyP^(B).Twoexperiments
5l(1)and
3l(2)areindependentif, andonlyif,