Foundations of the theory of probability

(Jeff_L) #1
12 I. ElementaryTheoryofProbability

five probabilities

P(A^

}

)

is that the conditional probability
of

the resultsA

q

w

of

experiments
3t

(i

'>

under the hypothesis
that

several other tests 2l


(il)

,

9l

(i,)

,...,W

ik)

have hod
definite

results

A&\AM,A


i

**>,...,A

{

£

)

is equal
to the absolute probability

Onthebasisofformulas (4) wecanproveinananalogous

mannerthefollowingtheorem

:

Theorem III. //allprobabilitiesP(A
k)

arepositive, then
a

necessary and
sufficient

condition
for

mutual
independence
of

theeventsA

lt

A

2i

...,

A

n

is

the
satisfactionoftheequations

P,

iA

...^(A)

=PW

(7)

for


anypairwisedifferenti
lt

i
2 ,

. ..
,


i
k,

i-

Inthecasen


2 theconditions
(7)

reducetotwo
equations:

P

Al

(A

2

)

=
P(A

2 )

f

|

P

AAA
l

)

=
P(A

1

). J

Itiseasytoseethatthefirstequationin
(8)

aloneisanecessary

andsufficientconditionfortheindependenceofA
x

andA
2

pro-

videdP(A
1 ) >

0.

§


  1. ConditionalProbabilitiesasRandomVariables,


MarkovChains

Let 51 beadecompositionofthefundamentalsetE:

E

=
A*+A
2

+...+A
r,

andxarealfunctionoftheelementaryevent

£T

whichforevery

setA

q

isequalto
a

correspondingconstanta

q

.x

is
thencalleda

random
variable,andthesum

E(x) -2a

Q

P(A

5

)

Q

is called themathematical expectation of the variable x. The

theoryofrandomvariableswillbedevelopedinChaps.IllandIV.

Weshallnotlimitourselvestheremerelytothoserandomvari-

ableswhichcanassumeonlyafinitenumberofdifferent

values.

ArandomvariablewhichforeverysetA

q

assumesthevalue

PA

qi

(B),weshallcall theconditionalprobability
of

theeventB

afterthegivenexperiment%andshalldesignateitbyP^(B).Two

experiments
5l

(1)

and
3l

(2)

areindependentif, andonlyif,
Free download pdf