12 I. ElementaryTheoryofProbability
five probabilities
P(A^
}
)
is that the conditional probability
of
the resultsA
q
w
of
experiments
3t
(i
'>
under the hypothesis
that
several other tests 2l
(il)
,
9l
(i,)
,...,W
ik)
have hod
definite
results
A&\AM,A
i
**>,...,A
{
£
)
is equal
to the absolute probability
Onthebasisofformulas (4) wecanproveinananalogous
mannerthefollowingtheorem
:
Theorem III. //allprobabilitiesP(A
k)
arepositive, then
a
necessary and
sufficient
condition
for
mutual
independence
of
theeventsA
lt
A
2i
...,
A
n
is
the
satisfactionoftheequations
P,
iA
...^(A)
=PW
(7)
for
anypairwisedifferenti
lt
i
2 ,
. ..
,
i
k,
i-
Inthecasen
—
2 theconditions
(7)
reducetotwo
equations:
P
Al
(A
2
)
=
P(A
2 )
f
|
P
AAA
l
)
=
P(A
1
). J
Itiseasytoseethatthefirstequationin
(8)
aloneisanecessary
andsufficientconditionfortheindependenceofA
x
andA
2
pro-
videdP(A
1 ) >
0.
§
- ConditionalProbabilitiesasRandomVariables,
MarkovChains
Let 51 beadecompositionofthefundamentalsetE:
E
=
A*+A
2
+...+A
r,
andxarealfunctionoftheelementaryevent
£T
whichforevery
setA
q
isequalto
a
correspondingconstanta
q
.x
is
thencalleda
random
variable,andthesum
E(x) -2a
Q
P(A
5
)
Q
is called themathematical expectation of the variable x. The
theoryofrandomvariableswillbedevelopedinChaps.IllandIV.
Weshallnotlimitourselvestheremerelytothoserandomvari-
ableswhichcanassumeonlyafinitenumberofdifferent
values.
ArandomvariablewhichforeverysetA
q
assumesthevalue
PA
qi
(B),weshallcall theconditionalprobability
of
theeventB
afterthegivenexperiment%andshalldesignateitbyP^(B).Two
experiments
5l
(1)
and
3l
(2)
areindependentif, andonlyif,