§- ConditionalProbabilitiesasRandomVariables,
MarkovChains
13Pm
(A?)=P(Af)q=\,2,...,r2.Givenanydecompositions (experiments) 5l(1),5l(2),...
,9l(n),weweshallrepresentby2l(1>2l(2)..
.$(»>thedecompositionofsetEintotheproductsExperiments3i(1\2l(2),...
,%(n)aremutuallyindependentwhenandonlywhenpgB1,
a,»...p.1
,(4»)=P(4'),kand
qbeingarbitrary14.Definition: Thesequence
3l(1),$(2),...
,5l(n),...formsaMarkovchain ifforarbitrarynandqP«»>«<«...w-«>W)=Pa(n-D(4n)).Thus, Markov chains form a natural generalization of se-quencesofmutuallyindependentexperiments.Ifwe
setpQmgn(m,n)=
PA™
(A™)
m<n
,thenthebasicformulaofthetheoryofMarkovchainswillassume
theform:
pQkqn(k>n)==*Zpqkqm(k,m)pgmqH(m,n)yk<m<n.(1)QmIfwedenotethematrix\\pqmgn(nt,n)\\
byp(m,ri),
(1)canbewrittenas15:p(k,n)—
p(k,m)p(m,n) k<m<n.
(2)14ThenecessityoftheseconditionsfollowsfromTheoremII,
§ 5;thattheyarealso sufficient follows immediatelyfrom the Multiplication Theorem(Formula
(7)of
§4).16ForfurtherdevelopmentofthetheoryofMarkovchains,seeR.v.Mises[1],§16,andB.Hostinsky,Methodesgenerates
ducalculdesprobabilites,"Mem.Sci.Math."V.52,Paris1931.