24III. Random
VariablesF
(x)(a) (cf.
§3,IIIinChap. II).Sinceourmaininterestliesinthesevaluesof P(x)(A), thedistributionfunctionplays
amostsignificantroleinallourfuturework.IfthedistributionfunctionF(x)(a) isdifferentiate,thenwecallitsderivativewithrespecttoa,theprobabilitydensityofxatthepointa.aIfalsoF(x)(a)=jfix)(a) daforeacha, thenwemayex-—oopress
theprobabilityfunction?(x)(A)
foreach
Borel setAinterms
of
f(x)(a) inthe
followingmanner:Pto(A)=ff(*){a)da.
(5)AInthiscasewecallthedistribution
ofxcontinuous.And
inthegeneral
case,wewrite,analogouslyPW(A)-=
fdFW\a).
(6)AAlltheconceptsjustintroducedarecapableofgeneralizationforconditionalprobabilities.Thesetfunction9%\A)=?B(xc:A)istheconditionalprobabilityfunctionofx underhypothesisB.Thenon-decreasingfunctionFf(a)=
PB(x<a)is thecorrespondingdistribution function, and,finally
(inthecasewhereF^(a) isdifferentiate)*?(*)=
j;*VMistheconditionalprobability
densityof
xat thepoint
aunderhypothesisB.§- Multi-dimensional
DistributionFunctionsLetnow
nrandomvariablesx
ltx
2,...,x
nbegiven.Thepointx=
(x
ux
2 ,...
,Xn)ofthe7i-dimensionalspaceRnisafunctionof theelementaryevent £. Therefore,accordingto thegeneralrules in
§1,we have a field«j(*i;*.••.*>consisting of