Foundations of the theory of probability

(Jeff_L) #1
24

III. Random
Variables

F


(x)

(a) (cf.
§3,

IIIinChap. II).Sinceourmaininterestliesin

thesevaluesof P

(x)

(A), thedistributionfunctionplays
a

most

significantroleinallourfuturework.

IfthedistributionfunctionF

(x)

(a) isdifferentiate,then

we

callitsderivativewithrespecttoa,

the

probabilitydensityofxatthepointa.

a

IfalsoF

(x)

(a)

=

j

f

ix)

(a) daforeacha, thenwemayex-

—oo

press
the

probabilityfunction?

(x)

(A)
for

each
Borel setA

in

terms
of
f

(x)

(a) in

the
followingmanner:

Pto(A)=ff(*){a)da.
(5)

A

Inthiscasewecallthedistribution
of

xcontinuous.And
in

the

general
case,wewrite,analogously

PW(A)-=
fdFW\a).
(6)

A

Alltheconceptsjustintroducedarecapableofgeneralization

forconditionalprobabilities.Thesetfunction

9%\A)=?

B

(xc:A)

istheconditionalprobabilityfunctionofx underhypothesisB.

Thenon-decreasingfunction

Ff(a)

=
P

B

(x<a)

is thecorrespondingdistribution function, and,

finally
(in

the

casewhereF^(a) isdifferentiate

)

*?(*)=
j;*VM

istheconditionalprobability
density

of
xat the

point
aunder

hypothesisB.

§


  1. Multi-dimensional


DistributionFunctions

Let

now
nrandomvariablesx
lt

x
2

,...,x
n

begiven.The

point

x

=
(x
u

x
2 ,

...
,Xn)

ofthe7i-dimensionalspaceR

n

isa

function

of theelementaryevent £. Therefore,accordingto thegeneral

rules in
§1,

we have a field

«j(*i;

*.••.*>

consisting of
Free download pdf