§- DefinitionofRandomVariablesandofDistributionFunctions 23
Sinceg(
*>isafield,thenalongwiththeintervals (-oo,«a) itcontainsallpossiblefinitesumsofhalf-openintervals [a,-b).Ifourfieldofprobabilityisa
Borelfield,then
$and5U)areBorelfields
;therefore,in
this
case
%(x)containsallBorelsets
ofR1,Theprobabilityfunctionofarandomvariable
weshalldenoteinthefuturebyP<*>(A').Itisdefinedfor
all
setsofthefieldft<*>.In particular, for the most important case, the
Borel
field ofprobability, P
(x)isdefinedforallBorel setsofR1.Definition.ThefunctionF<*Ha)=P<*>(-*>',
a)=p
{x<a},where
- ooand
4-
ooareallowablevaluesofa,iscalledthedistri-bution
functionof
therandomvariablex.Fromthedefinition
itfollows
atonce thatFW(-oo) =0,FW(
+oo) =
1.
(1)Theprobabilityofthe realizationofboth inequalitiesa^x<b,
isobviouslygivenbytheformula
?{xc
[a;b)}=F&{b)- F&(a) (2)
Fromthis,wehave,fora
<
b,FW(a)§FW(5)which
meansthatF
(x)(a) isanon-decreasingfunction.Nowletfli<a
2
<...<a
n< ...<b
;then^{xa[an;b)}=nTherefore, inaccordancewith thecontinuityaxiom,
FV(b)-F(*)(an)=
P{xcz[an>b)}approacheszeroas«->
oo.FromthisitisclearthatF(x)(a) iscontinuousonthe
left.
Inananalogous
waywecanprove
theformulae:limFW
(a)=
FW(.-oo)=0, a-+oo
, (3)limFW
(a)=F«
(+oo)=
1, a- +oo-
(4)
Ifthefieldofprobability(5,P) isaBorelfield,thevaluesoftheprobabilityfunctionP<*>(A)
for all BorelsetsA of i^
1areuniquelydetermined
byknowledgeofthe distributionfunction