Foundations of the theory of probability

(Jeff_L) #1
26 III.
RandomVariables

limF(«
lf

a

2

,

...,a

n

)

=F(a

v

..
.,«,_
lf

-oo,a

i+1

,

..
.,a
n

)

=

0, (7)

limyfo,a,,

..
.,a

n

)

=
F(+<x>, +<x>,..
.,+

oo)

=


  1. (8)


O,


+00,a
t

— +oo.
...,a
M

->
+oo

Thedistributionfunction F<

x
*

x

*•*•»)
givesdirectlythevalues

ofP

(Xl

'

*
2

Xh)

onlyforthespecialsetsL

flia,

...
a


. If
ourfield,how-


ever,isaBorelfield,then

2

?<*"* >*»)
isuniquely
determinedfor

allBorel
sets

in
R

n

byknowledge of the distributionfunction

Ifthere existsthederivative

wecallthisderivativethen-dimensionalprobabilitydensityof


therandomvariables
x
u


x
2

,...,x
n

atthepointa
u

a

2r

.. ,a„.

If

alsoforevery
point (a
11


a
2 ,

...
,

a
n)

p(xux*.
...,*„>

(a

x

a

2

...
an)

=

| f

...jf{a
lt

a

2

a
n

)da,da

2

...da

n

,

—OO—oo —oo

thenthe


distributionofx

lf

x
2

,...,se»

iscalledcontinuous.For

everyBorelsetAc#

M

,wehavetheequality

pfeu......,«.)

(4)-=yj.

.
.jf(a

v

a
%t

..
.,

flji^rffl,.••<**„. (9)

4

Inclosingthissectionweshallmakeonemore

remarkabout

therelationshipsbetween thevarious


probabilityfunctionsand

distributionfunctions.

Giventhesubstitution

s

/i.
2, .... n\

andlet^denotethetransformation


*i

=
x

ik

(k

=

1,2,

...,n)

ofspacei?

w

intoitself.Itisthenobviousthat

pfrv*^.

••-,*»,)

(4)

=

p(*i,*.,...,«w{r-i^)}.

(10)

Now
letx'

=

Pk(x)

bethe"projection" ofthespaceR

n

on

the

spaceR

k

(k<n),sothatthepoint(x
lf

x
2
,

..
.

,x
n)

ismappedonto

thepoint(x
u

x

2t

..

.

,^
fc)

.Then,asaresultofFormula
(2)

in
§

1,

Cf.
§3,

IVintheSecondChapter.
Free download pdf