§- ProbabilitiesinInfinite-dimensionalSpaces 27
p<*.,*a
,...,**>(,4)=pttk.*.....-^^-!^)}.(ii)For
thecorrespondingdistributionfunctions,weobtainfrom(10) and(11) theequations:/#*.•*«.•—"Ufo,aia,..
.,ain)=
F<*»**<••->^(a1,a2a
n),(12)pin,**....,**)(alfa
2t...,ak)=Fx
»•«••••*«>(ax,...,aft,+oo,...,+oo).(13)§- ProbabilitiesinInfinite-dimensional
SpacesIn
§3 ofthesecondchapterwehaveseenhowtoconstructvariousfieldsofprobabilitycommoninthetheoryofprobability.Wecan imagine, however, interesting problems in whichtheelementaryevents are definedbymeans ofan infinite numberofcoordinates.Let
ustakeasetMofindices/*(indexing
set) ofarbitrary
cardinality
m. Thetotalityofallsystems
ofrealnumbersxM,where/xrunsthroughtheentiresetM,weshallcallthespaceR
M(inordertodefineanelement
£inspaceR
M,wemustputeachelement/xinsetMincorrespondencewitha realnumber
%
or, equivalently, assign a real single-valuedfunction
x^
oftheelement
/*,definedonM)3.Ifthe
setMconsistsof
the
first
nnaturalnumbers1,2,..
.,n,thenRMistheordinary7i-dimensionalspaceR
n.IfwechooseforthesetMallrealnum-bersR
1,thenthecorrespondingspace RM=
RR1will consist ofallrealfunctions
((/*)=xttoftherealvariable
/*.
WenowtakethesetRM(withan arbitrary setM) asthebasicsetE.Let I
={x^}
beanelementinE;weshalldenotebyft*
a...>»:(£)^ne Point {x/tl,xiH9..-.txfh)' of the n-dimensionalspaceR
n.AsubsetAofEweshall callacylinderset ifitcanbe representedintheform
whereA'isasubsetof#
w.Theclassofallcylindersetscoincides,therefore,withtheclassofallsetswhichcanbedefinedbyrela-
tionsoftheform
3Cf.Hausdorff,Mengenlehre,
1927,p.23.