§
- ProbabilitiesinInfinite-dimensionalSpaces 27
p<*.,*a
,...,**>(,4)=pttk.*.....-^^-!^)}.
(ii)
For
thecorresponding
distributionfunctions,weobtainfrom
(10) and(11) the
equations
:
/#*.•*«.•
—"Ufo,
a
ia
,
..
.,
a
in
)
=
F<*»**<••->^(a
1
,a
2
a
n)
,
(12)
pin,**....,**)
(a
lf
a
2t
...,a
k
)
=F
x
»•«••••*«>
(a
x
,...,a
ft
,+oo,...,+oo).(13)
§
- ProbabilitiesinInfinite-dimensional
Spaces
In
§
3 ofthesecondchapterwehaveseenhowtoconstruct
variousfieldsofprobabilitycommoninthetheoryofprobability.
Wecan imagine, however, interesting problems in whichthe
elementaryevents are definedbymeans ofan infinite number
ofcoordinates.Let
ustakeasetMofindices/*
(indexing
set) of
arbitrary
cardinality
m
. Thetotalityofallsystems
ofrealnumbersx
M
,
where/xrunsthroughtheentiresetM,
we
shallcallthespaceR
M
(inordertodefineanelement
£
inspace
R
M
,
wemustputeachelement/xinsetMincorrespondencewith
a realnumber
%
or, equivalently, assign a real single-valued
function
x^
oftheelement
/*,definedonM)
3
.
Ifthe
setM
consists
of
the
first
nnaturalnumbers1,2,..
.
,n,thenR
M
isthe
ordinary
7i-dimensionalspaceR
n
.IfwechooseforthesetMallrealnum-
bersR
1
,
thenthecorrespondingspace R
M
=
R
R1
will consist of
allrealfunctions
((/*)
=x
tt
oftherealvariable
/*.
WenowtakethesetR
M
(withan arbitrary setM) as
the
basicsetE.Let I
={x^}
beanelementinE;weshalldenoteby
ft*
a...
>»:(£)
^ne Point {x
/tl
,x
iH9
..-.
t
x
fh
)' of the n-dimensional
spaceR
n
.AsubsetAofEweshall callacylinderset ifitcan
be representedintheform
whereA'isasubsetof#
w
.Theclassofallcylindersetscoincides,
therefore,withtheclassofallsetswhichcanbedefinedbyrela-
tionsoftheform
3
Cf.Hausdorff,Mengenlehre,
1927,p.
23.