§
5.EquivalentRandomVariables;VariousKindsof
Convergence
33
Asthelimitofthesequence
(x^,
4
Wl)
,•.•,
#i
Wi)
),
i
=
1,2,3,
..
.
,the
point(x
lt
x
2 ,
..
.
,
£fc)
belongstothesetU
k
.Therefore,
£
belongsto
foranykandthereforetotheproduct
k
*
§5.
EquivalentRandom
Variables;VariousKindsofConvergence
Startingwiththisparagraph,wedealexclusivelywithBorel
fields
of
probability. Aswehavealreadyexplainedin
§
2 ofthe
secondchapter,thisdoesnotconstituteanyessentialrestriction
onourinvestigations.
Tworandom variables xand
y
arecalled equivalent, ifthe
probabilityoftherelationx^=-yis
equaltozero.Itisobviousthat
twoequivalent
randomvariableshavethesameprobabilityfunc-
tion:
pu)(A) =
?(y)(A).
Therefore, the distribution functions F^ and F-W are also
identical.
Inmanyproblemsinthetheoryofprobabilitywemay
substitute for any random variable any equivalent variable.
Nowlet
X\,X%,...
,
X
n
,
... \L)
beasequenceofrandomvariables.Letusstudythe setAofall
elementaryevents
£
forwhich
thesequence (1) converges.
Ifwe
denotebyA
(
™J
thesetsof£forwhichallthefollowinginequalities
hold
K+*-*»|
<^
k=
\,2,...,p
thenweobtainatonce
A=$<§3Mj;.
(2)
mn
p
Accordingto
§3,theset
A^
alwaysbelongstothefieldgf.
The
relation
(2)
shows
that
A,
too,belongsto5-Wemay,therefore,
speak
oftheprobability
of
convergenceofasequenceofrandom
variables,foritalwayshasaperfectlydefinitemeaning.
Now lettheprobability P(A) ofthe convergence setA be
equal tounity. Wemaythenstate that thesequence
(1)
con-
verges withtheprobabilityonetoarandomvariable x,where