§5.EquivalentRandomVariables;VariousKindsofConvergence
33Asthelimitofthesequence(x^,4Wl),•.•,#iWi)),i=1,2,3,..
.,thepoint(x
ltx
2 ,..
.,
£fc)belongstothesetU
k.Therefore,
£belongstoforanykandthereforetotheproductk*§5.EquivalentRandom
Variables;VariousKindsofConvergenceStartingwiththisparagraph,wedealexclusivelywithBorelfields
ofprobability. Aswehavealreadyexplainedin
§2 ofthesecondchapter,thisdoesnotconstituteanyessentialrestrictiononourinvestigations.Tworandom variables xand
yarecalled equivalent, iftheprobabilityoftherelationx^=-yis
equaltozero.Itisobviousthattwoequivalent
randomvariableshavethesameprobabilityfunc-tion:pu)(A) =
?(y)(A).Therefore, the distribution functions F^ and F-W are alsoidentical.
Inmanyproblemsinthetheoryofprobabilitywemaysubstitute for any random variable any equivalent variable.NowletX\,X%,...
,Xn,... \L)beasequenceofrandomvariables.Letusstudythe setAofallelementaryevents
£forwhich
thesequence (1) converges.IfwedenotebyA(™Jthesetsof£forwhichallthefollowinginequalitiesholdK+*-*»|
<^k=
\,2,...,pthenweobtainatonce
A=$<§3Mj;.
(2)mn
pAccordingto
§3,thesetA^
alwaysbelongstothefieldgf.Therelation
(2)shows
thatA,
too,belongsto5-Wemay,therefore,speak
oftheprobability
ofconvergenceofasequenceofrandomvariables,foritalwayshasaperfectlydefinitemeaning.Now lettheprobability P(A) ofthe convergence setA beequal tounity. Wemaythenstate that thesequence
(1)con-verges withtheprobabilityonetoarandomvariable x,where