34III. Random
Variablestherandomvariablexisuniquelydennedexceptforequivalence.Todeterminesucharandomvariablewe
setlimx
nn ooonA,andx— outsideofA.
Wehave
toshowthatxisarandomvariable,inotherwords,
thatthesetA
(a) oftheelements£ forwhichx<a,belongsto5-ButA(a)=A<S<£>{xn+p<a}incasea
^0,andA(a)=
,4©${*
n+p<tf}
+^"n pinthe
oppositecase,fromwhich
ourstatementfollows
atonce.Ifthe probabilityof convergenceof thesequence (1) to xequalsone,thenwesaythatthesequence
(1)convergesalmostsurelytox.However,forthetheoryofprobability,anothercon-ceptionofconvergence is possiblymoreimportant.Definition.Thesequence
x
ux2,..
.,xn,..'.'.ofrandomvari-ables convergesinprobability (converge
enprobability)
totherandomvariablex,ifforany£>0,theprobabilitytendstowardzeroasn—
oo5.I.
Ifthesequence
(1)convergesinprobabilitytoxandalsotox',then
xandx'areequivalent.Infactsincethelastprobabilitiesareassmallaswepleaseforasuffici-entlylargenitfollowsthatp|i*-*'i>y=°andwe
obtainatonce thatP{x±X
'}^]?P{\x-X'\>lt}=0.mII.
//thesequence (1) almostsurelyconvergestox,thenit5ThisconceptisduetoBernoulli; its completelygeneral treatmentwasintroducedbyE.E.Slutsky(see
[1]).