Foundations of the theory of probability

(Jeff_L) #1
34

III. Random
Variables

therandomvariablexisuniquelydennedexceptforequivalence.

Todeterminesucharandomvariablewe
set

limx
n

n oo

onA,andx— outsideofA.
We

have
toshowthatxisarandom

variable,inotherwords,
that

thesetA
(a) oftheelements£ for

whichx<a,belongsto5-But

A(a)=A<S<£>{x

n+p

<a}

incasea
^

0,and

A(a)=
,4©${*
n+p

<tf}
+

^"

n p

inthe
oppositecase,

fromwhich
our

statementfollows
at

once.

Ifthe probabilityof convergenceof thesequence (1) to x

equalsone,thenwesaythatthesequence
(1)

convergesalmost

surelytox.However,forthetheoryofprobability,anothercon-

ceptionofconvergence is possiblymoreimportant.

Definition.Thesequence
x
u

x

2

,

..
.

,x

n

,

..

'.'.

ofrandomvari-

ables convergesin

probability (converge
en

probability)
to

the

randomvariablex,ifforany£>0,theprobability

tendstowardzeroasn


oo

5

.

I.
If

thesequence
(1)

convergesinprobabilitytoxandalso

tox',

then
x

andx'areequivalent.Infact

sincethelastprobabilitiesareassmallaswepleaseforasuffici-

entlylargenitfollowsthat

p

|i*-*'i>y=°

andwe
obtainat

once that

P{x±X
'}^]?P{\x-X

'\>l

t

}

=0.

m

II.
//thesequence (1) almostsurely

convergestox,thenit

5

ThisconceptisduetoBernoulli; its completelygeneral treatmentwas

introducedbyE.E.Slutsky(see
[1]).

Free download pdf