ChapterIVMATHEMATICAL
EXPECTATIONS1§- Abstract
LebesgueIntegrals
Let#bearandomvariableandAasetofgf.Letusform,forapositiveA,thesumk=+00S;.
^^H?{kk^f<{k+i)Xt(cA}. (1)*=-00IfthisseriesconvergesabsolutelyforeveryA,thenasA—
0,Sktendstowardadefinitelimit,whichisbydefinitiontheintegralI-xP(dE).
(2)AInthisabstractformtheconceptofanintegralwasintroducedby Frechet2;it is indispensable for the theoryof probability.(Thereaderwillseeinthefollowingparagraphsthattheusualdefinition for the conditional mathematical expectation of thevariable x under hypothesisA coincides withthe definition ofthe
integral
(2) exceptfor aconstantfactor.)We shall give here a brief survey of the most importantpropertiesoftheintegralsofform
(2).Thereaderwillfindtheirproofsinevery textbookon real variables,althoughtheproofsareusuallycarriedoutonlyinthecasewhereP(A)istheLebesguemeasureof
setsin
Rn.The
extensionoftheseproofs
tothegeneralcasedoesnotentailanynewmathematicalproblem;forthemostparttheyremainwordforwordthesame.I. If arandomvariable xis integrableonA, thenit is in-tegrateoneachsubsetA'ofA belongingto
g.II. If x is integrable on A and A is decomposed into no1Aswasstatedin
§5 ofthethirdchapter,weareconsideringinthis,aswellasinthefollowingchapters,Borel
fieldsofprobabilityonly.2Frechet,
SurVintegrale oVune
functionnelleetendue a un ensembleabstrait,
Bull. Soc.Math.Francev.43,1915,p.248.37