ChapterIV
MATHEMATICAL
EXPECTATIONS
1
§
- Abstract
LebesgueIntegrals
Let#bearandomvariableandAasetofgf.Letusform,fora
positiveA,thesum
k=+00
S;.
^^H?{kk^f<
{k+i)X
t
(cA}. (1)
*=
-00
IfthisseriesconvergesabsolutelyforeveryA,thenasA
—
0,S
k
tendstowardadefinitelimit,whichisbydefinitiontheintegral
I-
xP(dE)
.
(2)
A
Inthisabstractformtheconceptofanintegralwasintroduced
by Frechet
2
;
it is indispensable for the theoryof probability.
(Thereaderwillseeinthefollowingparagraphsthattheusual
definition for the conditional mathematical expectation of the
variable x under hypothesisA coincides withthe definition of
the
integral
(2) exceptfor aconstantfactor.)
We shall give here a brief survey of the most important
propertiesoftheintegralsofform
(2)
.Thereaderwillfindtheir
proofsinevery textbookon real variables,althoughtheproofs
areusuallycarriedoutonlyinthecasewhereP(A)istheLebesgue
measureof
sets
in
R
n
.
The
extensionofthese
proofs
to
thegeneral
casedoesnotentailanynewmathematicalproblem;
forthemost
parttheyremainwordforwordthesame.
I. If arandomvariable xis integrableonA, thenit is in-
tegrateoneachsubsetA'ofA belongingto
g.
II. If x is integrable on A and A is decomposed into no
1
Aswasstatedin
§
5 ofthethirdchapter,weareconsideringinthis,aswell
asinthefollowingchapters,Borel
fieldsof
probabilityonly.
2
Frechet,
Sur
Vintegrale oVune
functionnelle
etendue a un ensemble
abstrait,
Bull. Soc.Math.Francev.43,1915,p.248.
37