Foundations of the theory of probability

(Jeff_L) #1
38 IV.

MathematicalExpectations

morethanacountable

numberofnon-intersecting
sets

A

n

ofgf,

then

r

_

,

JxPXdE)=£jxP(dE).

A
nAn

III. Ifxisintegrable

r

|

a;
|

isalsointegrable,andinthatcase

\jxP(dE)\^j\x\P{dE),

A
A

IV. Ifineachevent
|,

theinequalities
^y

s^xhold,then

alongwith
x,y

isalsointegrable

3

,

andinthatcase

JyP(dE)

^fxP{dE)

A A

V. Ifm
^

as
g

MwheremandMaretwoconstants,then

m

P(A)^jxP(dE)
^MP{A).

VI. If£and
y

areintegrable,andKandLaretworealcon-

stants,thenKx
+

Lyis alsointegrable,
and

inthis
case

j(Kx+Ly)P(dE)

=

KJxP{dE)

+
LJyP(dE)

.

VII. Iftheseries

]?j\x
n

\P(dE)

nA

converges,then theseries

JmmiXfi

X

n

convergesateachpointofsetAwiththeexceptionofacertain

setBforwhichP(B)


0.Ifwesetx

=
everywhereexcepton

A


  • B


t

then

jxP{dE)=^jx
n

P(dE).

n
A

VIII. If
x

and

y

are equivalent (P{*
4=
y)

~

0)»

then ^or

everysetAof
5

jxP(dE)=jyP(dE). (3)

3

Itisassumedthat
y

isarandomvariable,i.e.,
intheterminologyofthe

generaltheoryofintegration,measurablewith
respectto
%


.
Free download pdf