38 IV.MathematicalExpectationsmorethanacountablenumberofnon-intersecting
setsAnofgf,thenr_
,JxPXdE)=£jxP(dE).A
nAnIII. Ifxisintegrabler|a;
|isalsointegrable,andinthatcase\jxP(dE)\^j\x\P{dE),A
AIV. Ifineachevent
|,theinequalities
^ys^xhold,thenalongwith
x,yisalsointegrable3,andinthatcaseJyP(dE)^fxP{dE)A AV. Ifm
^as
gMwheremandMaretwoconstants,thenmP(A)^jxP(dE)
^MP{A).VI. If£and
yareintegrable,andKandLaretworealcon-stants,thenKx
+Lyis alsointegrable,
andinthis
casej(Kx+Ly)P(dE)=KJxP{dE)+
LJyP(dE).VII. Iftheseries]?j\x
n\P(dE)nAconverges,then theseriesJmmiXfiXnconvergesateachpointofsetAwiththeexceptionofacertainsetBforwhichP(B)—
0.Ifwesetx=
everywhereexceptonA- B
tthenjxP{dE)=^jx
nP(dE).n
AVIII. If
xandyare equivalent (P{*
4=
y)~0)»then ^oreverysetAof
5jxP(dE)=jyP(dE). (3)3Itisassumedthat
yisarandomvariable,i.e.,
intheterminologyofthegeneraltheoryofintegration,measurablewith
respectto
%
.