38 IV.
MathematicalExpectations
morethanacountable
numberofnon-intersecting
sets
A
n
ofgf,
then
r
_
,
JxPXdE)=£jxP(dE).
A
nAn
III. Ifxisintegrable
r
|
a;
|
isalsointegrable,andinthatcase
\jxP(dE)\^j\x\P{dE),
A
A
IV. Ifineachevent
|,
theinequalities
^y
s^xhold,then
alongwith
x,y
isalsointegrable
3
,
andinthatcase
JyP(dE)
^fxP{dE)
A A
V. Ifm
^
as
g
MwheremandMaretwoconstants,then
m
P(A)^jxP(dE)
^MP{A).
VI. If£and
y
areintegrable,andKandLaretworealcon-
stants,thenKx
+
Lyis alsointegrable,
and
inthis
case
j(Kx+Ly)P(dE)
=
KJxP{dE)
+
LJyP(dE)
.
VII. Iftheseries
]?j\x
n
\P(dE)
nA
converges,then theseries
JmmiXfi
X
n
convergesateachpointofsetAwiththeexceptionofacertain
setBforwhichP(B)
—
0.Ifwesetx
=
everywhereexcepton
A
- B
t
then
jxP{dE)=^jx
n
P(dE).
n
A
VIII. If
x
and
y
are equivalent (P{*
4=
y)
~
0)»
then ^or
everysetAof
5
jxP(dE)=jyP(dE). (3)
3
Itisassumedthat
y
isarandomvariable,i.e.,
intheterminologyofthe
generaltheoryofintegration,measurablewith
respectto
%
.