Foundations of the theory of probability

(Jeff_L) #1
48 V. ConditionalProbabilitiesand
MathematicalExpectations

PM(A)

>

0.The
function

P

U

(B) ofuthusdeterminedtowithin

equivalence,wecallthe
conditionalprobability
of

Bwithrespect

tou(or,for
a

given
u).ThevalueofP
M

(Z?) whenu

=
awe
shall

designate
by

P

u

(a;B).

The
proof
of

the existenceanduniqueness
of P
U

(B). Ifwe

multiply

(1)

by

P{ucA} =
P<«>(A), we
obtain, on the left,

P{uczA}P

ucA

{B)=P(B{ucA})=
P\Bu-HAj)

and,ontheright,

P{ucA}E

{ucA}

P

u

(B)=

JP

U

(B)P(dE)

=JP

U

(B)P<*>(rf£(«))

;

{ucA}
A

leadingtotheformula

P(B«-

1

M))=/P
u

(B)PW(i£W).

(2)

A

andconversely
(1)

followsfrom
(2). Inthecase P

(u

HA)

=
0,

inwhich
case (1)ismeaningless,equation (2) becomestrivially

true.Condition
(2)

isthusequivalentto
(1).

Inaccordancewith

PropertyIXoftheintegral
(§1,

Chap.IV) therandomvariable

xis uniquelydefined (except forequivalence) bymeansofthe

valuesoftheintegral

fxPd(E)

A

forall setsof g. SinceP
U

(B) isa randomvariabledetermined

ontheprobabilityfield
(8f<*>,

P

(M

>),itfollowsthatformula
(2)

uniquelydeterminesthisvariable P

U

(B) exceptforequivalence.

Wemust

still
provetheexistenceof P
M

(J5). Weshall
apply

herethefollowingtheoremof Nikodym

1

:

Let
5

beaBorelfield,P(A)anon-negativecompletelyadditive

setfunctiondefinedon
5


(intheterminologyoftheprobability

theory,arandomvariableon
(5,


P)),andletQ(A) beanother

completely additive set function defined on
J$f>


such thatfrom

Q(A)4=0


follows
the

inequality P(A)
>


  1. Thenthereexists
    a


function
/(£)


(intheterminology ofthe

theory
of

probability,

arandomvariable) whichismeasurablewith respectto
%,


and

whichsatisfies,foreachsetAof
5,


theequation

1

0.Nikodym,SurunegeneralisationdesintegratesdeM.J.Radon,Fund.

Math.v.
15,


1930
p.

168 (TheoremIII).
Free download pdf