§1.ConditionalProbabilities 490(A)=//(f)P(dE).AInordertoapplythistheoremtoourcase,weneedtoprove1°thatQ(A) =
P(Bu-HA))isacompletelyadditivefunctiononJp>,2°,
thatfromQ(A)+0followsthe
inequalityP(M>(A)
>0.Firstly,2°followsfrom^P{Bu-HA))^P(u-HA))=
P<mHA).Fortheproofof1°wesetA=Z
A
n-then
u-l(A)=%u-HA
n
)nandB«->(^)=2B«-l(4).nSincePiscompletelyadditive,itfollowsthatP{BurKA$=2P{Bu-HAj)%nwhichwastobeproved.Fromtheequation (1) followsanimportantformula (ifwesetA=#<«>)
:P(B)=
E(P
U(B)).
(3)Nowweshallprovethefollowingtwofundamentalpropertiesofconditionalprobability.Theorem I. Itisalmostsure that0^Pu(B) gl.
(4)Theorem II.
//B is decomposed into at most a countablenumber
ofsetsBn:B=ZB'nt 9nthenthefollowing equality holdsalmostsurely:,P«(£)=ZP»(£»)-
(5)nThese
twopropertiesof P
U(B) correspondtothetwo char-acteristic properties
of the probability function P(B): thatgP(B)^1 always,andthatP(B)iscompletelyadditive.These