§
1.ConditionalProbabilities 49
0(A)
=
//(f)
P(dE).
A
Inorderto
applythistheoremtoourcase,weneedtoprove
1°
that
Q(A) =
P(Bu-HA))
isacompletely
additivefunctionon
Jp>,
2°,
thatfromQ(A)+0
followsthe
inequalityP
(M
>(A)
>
0.
Firstly,
2°
follows
from
^P{Bu-HA))^
P(u-HA))
=
P<
m
HA)
.
Fortheproofof
1°
weset
A=
Z
A
n-
then
u-
l
(A)=%u-HA
n
)
n
and
B«->(^)=2B«-
l
(4).
n
SincePiscompletelyadditive,itfollowsthat
P{BurKA$=2P{Bu-HAj)
%
n
whichwastobeproved.
Fromtheequation (1) followsanimportant
formula (ifwe
setA
=#<«>)
:
P(B)=
E(P
U
(B)).
(3)
Nowweshallprovethefollowingtwofundamentalproperties
ofconditionalprobability.
Theorem I. Itisalmostsure that
0^P
u
(B) gl.
(4)
Theorem II.
//
B is decomposed into at most a countable
number
of
setsB
n
:
B=
ZB'nt 9
n
thenthefollowing equality holdsalmostsurely:
,
P«(£)=ZP»(£»)-
(5)
n
These
twopropertiesof P
U
(B) correspondtothetwo char-
acteristic properties
of the probability function P(B): that
g
P(B)
^
1 always,andthatP(B)iscompletelyadditive.These