52
V. ConditionalProbabilitiesandMathematicalExpectationsP
x(a;B) was defined in
§1 except on
a set G, which issuchthatP(*>(G)=
0.Ifwenowregardformula
(3) asthedefi-nitionof P
x(a;B) (settingPx(a;B)=
when
thelimit intherighthand side of
(3)fails to exist), then
this new variablesatisfies allrequirements of
§1.If,besides,theprobability
densities
f(x)(a) andfg>(a) existandiff(xHa) >0,then
formula (3) becomesPI(a;S,=
P(S);|W.(4)Moreover,
from formula (3) itfollowsthattheexistenceof alimit
in (3) andofa probabilitydensity
f(x)(a) results intheexistenceof/</>
(a).InthatcaseP(B)12(a)
*(*). (5)IfP(B) >0,thenfrom
(4)wehaveIncase
f(x)(a)=
0,thenaccordingto
(5)/<*>
(a)—andthere-fore(6) alsoholds.If,besides,thedistributionofxiscontinuous,wehave+oo
+ooP(B)=E(P,(B))=j'Px(a;B)dFW(a)=j?x(a;B)fW(a)da. (7)—
oo —ooFrom
(6)and
(7)weobtain/?(«>=+y
d
-*)™(8)fPx(a;B)f*{a)da—ooThisequationgivesustheso-calledBayes*Theoremforcontinu-ousdistributions.Theassumptionsunderwhichthistheoremisprovedarethese: PX{B) ismeasurableintheBorelsenseandatthepointaisdefinedbyformula
(3),thedistributionofxiscon-tinuous, and at the
point
athere existsa probability densityf
(*Ha).§- ConditionalMathematicalExpectations
Let
ubeanarbitraryfunctionof
£,and
ya,randomvariable.TherandomvariableEm(t/),representableasafunctionofuandsatisfying,for
anysetAof$(M
>
with P(M>
(A)
>0,thecondition