Foundations of the theory of probability

(Jeff_L) #1
§


  1. ConditionalProbabilities


withRespecttoaKandomVariable 51

oppositepoints


forourpoles,
so

thateachmeridiancirclewillbe

uniquely


defined bythelongitude

v,

^

ip
<n

.Since
y>

varies

from only


to^r,—inotherwords,weareconsideringcomplete

meridian


circles (andnotmerelysemicircles)—thelatitude

mustvaryfrom



nto -\-n(andnot

from

—-
to
+

^

)

.Borelset

thefollowing


problem: Required todetermine "theconditional

probability distribution" of latitude
t


—7i<0<+tz, for
a

givenlongitude^.


Itiseasytocalculatethat

e

%

P

y>{0x

=g

<G

2

}

=

if\cosG\

d0.

Theprobabilitydistributionof foragiven V isnot


uniform.

If
weassumethattheconditionalprobabilitydistributionof

"withthehypothesisthat
$

liesonthegivenmeridiancircle"

mustbeuniform, thenwehavearrivedatacontradiction.


Thisshowsthattheconceptofaconditionalprobabilitywith

regardtoanisolatedgivenhypothesis whoseprobabilityequals


is inadmissible. For we can obtain a probability distribution


for onthemeridiancircleonlyifweregardthiscircle
as


an

elementofthedecompositionoftheentirespherical
surfaceinto


meridiancircleswiththegivenpoles.


§



  1. ConditionalProbabilitieswithRespect
    toaRandomVariable


Ifa? is
a

randomvariable
and

P

X

(B)
asa

function
of x is

measurable
inthe


Borel
sense,then

P

X

(B) canbe definedinan

elementary
way.Forwecanrewriteformula (2) in
§


1,tolook

asfollows


:

P(£)PJ»(ii)=/P,(B)

Pl*)(dE)

. (1)


A

Inthiscaseweobtainfrom
(1)


atoncethat

a

P{B)Ff(a)=JPu

(a;BydFW(a).
(2)

—oo

Inaccordance
withatheoremof
Lebesgue


2

itfollowsfrom
(2)

that


P^BJ-PWllmgg+j^gg

^o

(3)

whichis alwaystrueexceptfor
asetHofpointsa forwhich


P<*>(H) =
.

2

Lebesgue,
I.c,1928,
pp.

301-302.
Free download pdf