§
- ConditionalProbabilities
withRespecttoaKandomVariable 51
oppositepoints
forourpoles,
so
thateachmeridiancirclewillbe
uniquely
defined bythelongitude
v,
^
ip
<n
.Since
y>
varies
from only
to^r,—inotherwords,weareconsideringcomplete
meridian
circles (andnotmerelysemicircles)—thelatitude
mustvaryfrom
—
nto -\-n(andnot
from
—-
to
+
^
)
.Borelset
thefollowing
problem: Required todetermine "theconditional
probability distribution" of latitude
t
—7i<0<+tz, for
a
givenlongitude^.
Itiseasytocalculatethat
e
%
P
y>{0x
=g
<G
2
}
=
if\cosG\
d0.
Theprobabilitydistributionof foragiven V isnot
uniform.
If
weassumethattheconditionalprobabilitydistributionof
"withthehypothesisthat
$
liesonthegivenmeridiancircle"
mustbeuniform, thenwehavearrivedatacontradiction.
Thisshowsthattheconceptofaconditionalprobabilitywith
regardtoanisolatedgivenhypothesis whoseprobabilityequals
is inadmissible. For we can obtain a probability distribution
for onthemeridiancircleonlyifweregardthiscircle
as
an
elementofthedecompositionoftheentirespherical
surfaceinto
meridiancircleswiththegivenpoles.
§
- ConditionalProbabilitieswithRespect
toaRandomVariable
Ifa? is
a
randomvariable
and
P
X
(B)
asa
function
of x is
measurable
inthe
Borel
sense,then
P
X
(B) canbe definedinan
elementary
way.Forwecanrewriteformula (2) in
§
1,tolook
asfollows
:
P(£)PJ»(ii)=/P,(B)
Pl*)(dE)
. (1)
A
Inthiscaseweobtainfrom
(1)
atoncethat
a
P{B)Ff(a)=JPu
(a;BydFW(a).
(2)
—oo
Inaccordance
withatheoremof
Lebesgue
2
itfollowsfrom
(2)
that
P^BJ-PWllmgg+j^gg
^o
(3)
whichis alwaystrueexceptfor
asetHofpointsa forwhich
P<*>(H) =
.
2
Lebesgue,
I.c,1928,
pp.
301-302.