§- ConditionalProbabilities
 
withRespecttoaKandomVariable 51oppositepoints
forourpoles,
sothateachmeridiancirclewillbeuniquely
defined bythelongitudev,^ip
<n.Since
y>variesfrom only
to^r,—inotherwords,weareconsideringcomplete
meridian
circles (andnotmerelysemicircles)—thelatitude
mustvaryfrom
—
nto -\-n(andnotfrom—-
to
+^).Borelsetthefollowing
problem: Required todetermine "theconditionalprobability distribution" of latitude
t
—7i<0<+tz, for
agivenlongitude^.
Itiseasytocalculatethate%Py>{0x=g<G2}=if\cosG\d0.Theprobabilitydistributionof foragiven V isnot
uniform.If
weassumethattheconditionalprobabilitydistributionof"withthehypothesisthat
$liesonthegivenmeridiancircle"mustbeuniform, thenwehavearrivedatacontradiction.
Thisshowsthattheconceptofaconditionalprobabilitywithregardtoanisolatedgivenhypothesis whoseprobabilityequals
is inadmissible. For we can obtain a probability distribution
for onthemeridiancircleonlyifweregardthiscircle
as
anelementofthedecompositionoftheentirespherical
surfaceinto
meridiancircleswiththegivenpoles.
§
- ConditionalProbabilitieswithRespect
toaRandomVariable 
Ifa? is
arandomvariable
andPX(B)
asafunction
of x ismeasurable
inthe
Borel
sense,thenPX(B) canbe definedinanelementary
way.Forwecanrewriteformula (2) in
§
1,tolookasfollows
:P(£)PJ»(ii)=/P,(B)Pl*)(dE). (1)
AInthiscaseweobtainfrom
(1)
atoncethataP{B)Ff(a)=JPu(a;BydFW(a).
(2)—ooInaccordance
withatheoremof
Lebesgue
2itfollowsfrom
(2)that
P^BJ-PWllmgg+j^gg^o
(3)whichis alwaystrueexceptfor
asetHofpointsa forwhich
P<*>(H) =
.2Lebesgue,
I.c,1928,
pp.301-302.