54 V.ConditionalProbabilitiesandMathematicalExpectationsIfuandvaretwofunctionsoftheelementaryevent
£,thenthecouple (u,v) canalwaysberegardedasafunctionofg.Thefollowingimportantequationthenholds:EuE{UtV)(y)=
Eu(y).(5)For,Eu(y)isdennedbytherelationE{Mc^}(y)=
E{ttd}E
M(y),Therefore wemustshow
that E
ME
(M
,V)(y)satisfiesthe equationE{«cA}(y)=E{Mc^
}EME(tt>r)(y).(6)Fromthedefinition
ofE
(u>v)(y)itfollowsthatE{„cA}(y)=E{Mc^
}E(M>t;)(y).(7)Fromthedefinitionof E
ME
(MjV)(y)itfollows,moreover,thatE{u*a}E(W)t,)(y)- E
{MC^
}EmE
(M>r)
(y).(8)Equation(6) resultsfromequations
(7)and
(8)andthusprovesourstatement.Ifweset
y—
PU(B)equaltooneonBandtozerooutsideofB,then
E
u(y)=Pu{B),E{UtU)(y)=P(UtV)(B).Inthiscase,fromformula
(5)weobtaintheformulaE
MP(M,„)(B)=
-Pu(B).(9)TheconditionalmathematicalexpectationE
u(y)mayalsobedefineddirectlybymeansofthecorrespondingconditionalprob-abilities.Todothisweconsiderthefollowingsums:Sx{u)=~yi°kXPu{kX^y<(k
+\)X}=TRk.
(10)If E(y) exists,theseries
(10)almostcertainly* converges. Forwehavefromformula
(3),of
§ 1,E\Rk\=
\kk\P{kl&y<(k+i)X},andtheconvergenceoftheseries^ZMP{U^y<(k+i)X}=^E\Rk
\Weusealmostcertainlyinterchangeablywithalmostsurely.