54 V.
ConditionalProbabilitiesandMathematicalExpectations
Ifuandvaretwofunctionsoftheelementaryevent
£,
then
thecouple (u,v) canalwaysberegardedasafunctionofg.
The
followingimportantequationthenholds
:
E
u
E
{UtV)
(y)
=
E
u(y).
(5)
For,Eu(y)
isdennedbytherelation
E{
Mc^}(y)
=
E{ttd}E
M(y)
,
Therefore wemust
show
that E
M
E
(M
,
V)(y)
satisfiesthe equation
E{«cA}(y)
=E
{Mc^
}
E
M
E
(tt>r)(y).
(6)
Fromthedefinition
ofE
(u>v)(y)
itfollowsthat
E{„cA}(y)
=E
{Mc^
}
E
(M>t;)(y)
.
(7)
Fromthedefinitionof E
M
E
(MjV)(y)
itfollows,moreover,that
E{u*a}
E
(W)t,)(y)
- E
{MC^
}
E
m
E
(M>r)
(y)
.
(8)
Equation(6) resultsfromequations
(7)
and
(8)
andthusproves
ourstatement.
Ifweset
y
—
P
U
(B)equaltooneonBandtozerooutsideofB,
then
E
u(y)
=P
u
{B),
E
{UtU)(y)
=P
(UtV)
(B).
Inthiscase,fromformula
(5)
weobtaintheformula
E
M
P(
M
,„)(B)
=
-P
u
(B).
(9)
TheconditionalmathematicalexpectationE
u(y)
mayalsobe
defineddirectlybymeansofthecorrespondingconditionalprob-
abilities.Todothisweconsiderthefollowingsums
:
Sx{u)
=~y
i
°kXP
u
{kX^y<(k
+
\)X}
=TR
k
.
(10)
If E(y) exists,theseries
(10)
almostcertainly* converges. For
wehavefromformula
(3),
of
§ 1
,
E\R
k\
=
\kk\P{kl&y<(k+i)X},
andtheconvergenceoftheseries
^ZMP{U^y<(k+
i)X}=^E\R
k
\
Weuse
almostcertainlyinterchangeablywithalmostsurely.