§- ConditionalMathematicalExpectations 55
isthenecessaryconditionfortheexistenceofE(y) (seeChap.IV,§1). Fromthisconvergenceitfollowsthattheseries
(10)con-vergesalmostcertainly (seeChap.IV,
§2,V).Wecanfurthershow,exactlyasinthetheoryoftheLebesgueintegral,thatfromtheconvergenceof (10) forsomeA,itsconvergenceforeveryAfollows,andthatinthecasewhereseries(10)converges,
S
xM
tendstoadefinitelimitasA—3. Wecanthendefine
Eu(y)=limS
;».(U)ToprovethattheconditionalexpectationE
u(v)
definedbyrela-tion
(11)
satisfiestherequirementssetforthabove,weneedonlyconvince ourselvesthat E
M(y),
asdeterminedby
(11),satisfiesequation
(1).
Weprovethisfactthus:E{ueA}Eu(y)=hmE
{Mc^
}S;.(w)=lim2
kXp
{u<=A}{k*^y<(k+l)X}=E{ucA}(y).'/.
->
k——ooTheinterchangeofthemathematicalexpectationsignwiththelimitsign is admissibleinthis computation,since Sx(u) con-vergesuniformlytoEM(y)asA—
(asimpleresultofProperty
Vof mathematical expectation in
§2).
The interchange
of themathematical expectationsign
and
the
summation sign is alsoadmissiblesincetheseries=^{u,A}{\kX\?u[kl^y<(k
+1)A]}k=—oo=ZW
?{uCA}[kl^y<(k+\)X\converges (animmediateresultofPropertyVofmathematicalexpectation).Insteadof (11) wemaywriteE.(y)=/yP.
(<*£). (12)EWemust
notforgethere,however,that
(12)isnotanintegral3In
thiscaseweconsideronlyacountablesequenceofvaluesofA;thenall
probabilitiesPu{kl<Zy<(k
+i)X\ arealmostcertainlydefinedforallthesevaluesofA.