§
- ConditionalMathematicalExpectations 55
isthenecessary
conditionfortheexistenceofE(y) (seeChap.IV,
§
1). Fromthis
convergenceitfollowsthattheseries
(10)
con-
vergesalmostcertainly (seeChap.
IV,
§2,V).
Wecanfurther
show,exactlyasinthetheoryofthe
Lebesgueintegral,thatfrom
theconvergenceof (10) forsomeA,itsconvergenceforeveryA
follows,andthatinthecasewhereseries(10)converges,
S
x
M
tendstoadefinitelimitasA
—
3
. Wecanthendefine
E
u(y)
=limS
;».
(U)
ToprovethattheconditionalexpectationE
u(v)
definedbyrela-
tion
(11)
satisfiestherequirementssetforthabove,weneedonly
convince ourselvesthat E
M(y),
asdeterminedby
(11),
satisfies
equation
(1).
Weprovethisfactthus:
E{ueA}Eu(y)
=hmE
{Mc^
}
S;.(w)
=lim
2
kXp
{u<=A}{k*
^y<(k+l)X}=E
{ucA}(y)
.
'/.
->
k
——oo
Theinterchangeofthemathematicalexpectationsignwiththe
limitsign is admissibleinthis computation,since S
x
(u) con-
vergesuniformlytoE
M
(y)
asA
—
(asimpleresultofProperty
V
of mathematical expectation in
§2).
The interchange
of the
mathematical expectationsign
and
the
summation sign is also
admissiblesincetheseries
=
^{u,A}{\kX\
?
u
[kl
^y
<
(k
+1)A]}
k=
—oo
=
ZW
?{uC
A}[kl
^y<(k
+
\)X\
converges (animmediateresultofPropertyVofmathematical
expectation)
.
Insteadof (11) wemaywrite
E.(y)=/yP.
(<*£). (12)
E
Wemust
notforgethere,however,that
(12)
isnotanintegral
3
In
thiscaseweconsideronlyacountablesequenceofvaluesofA;then
all
probabilities
P
u
{kl<Zy<(k
+
i)X\ arealmostcertainlydefinedforall
thesevaluesofA.